

Human Joint Level Force Responsiveness and Control with Exoskeleton Assistance

Amro A. Alshareef,^{1,2} Gregory S. Sawicki^{1,2}

¹Woodruff School of Mechanical Engineering and ²Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta GA, USA Email: amroa@gatech.edu

Motivation

- How do exoskeletons affect sensorimotor control of movement?
- Exos act in parallel to a joint, affecting sensorimotor control loops that govern human movement [1].
- This may have unintended impacts on overall agility and stability [2].
- Recent work has begun to quantify human force responsiveness [3] and effects of neuromotor regulation on joint impedance [4].

Hypothesis

H1. Human +Exo system will be more responsive with PMC than NA

H2. Human + Exo system will be less accurate with PMC than NA

- Exo: Proportional Myoelectric (PMC) via Soleus EMG and No Assistance (NA)
- Target Torques: 20%, 40% and 60% of MVC
- 3 Repetitions of the full condition set

<u>Implications</u>

- Exoskeletons will improve performance in tasks requiring fast responses (e.g. perturbations)
- Exoskeletons may worsen performance in tasks requiring high precision.
- Unclear of other control methods (non-PMC) will have similar outcomes