BIOMECHANICAL ANALYSIS OF THE SHOULDER UNDERGOING INDUSTRY

RELEVANT TASKS

Carlo Canezo¹, Dustin Crouch², Gregory Sawicki¹

¹Physiology of Wearable Robots Lab, School of Mechanical Engineering, Georgia Tech, Atlanta, Georgia ²Upper Limb Assist Lab, University of Tennessee, Knoxville, Tennessee *Corresponding author's email: ccanezo3@gatech.edu

Motivation

Upper Body Exoskeleton (EXO) Technologies have seen developmental progress, but not widespread in industry. Challenges are:

- EXOs must account for user and task (Multi DOF and Workspace) or issues will arise (poor ergonomics, improper assistance, non-acceptance) [1]
- EXO development lacks a "formal roadmap" to inform designs [2]

To aid in developing Upper Body EXOs:

- Develop a **Biomechanical Model Data Set** of the Relevant Tasks
- Gather instrumented data (EMG, MOCAP, GRF) to drive computational models (OpenSim)
- Calculate Upper Body Joint Level Outcome Measures to determine injury "hotspots"
- Utilize data as ground truth for training ML models for eventual EXO controller design [4]

Central Hypothesis

- A) Increased interaction load leads to increased Shoulder Joint biomechanical demand*
- B) Demand* is further exacerbated by increased proximity in workspace extremes Demand = Shoulder Joint Moments, Powers, Work, Impulse

Methods

Analysis Pipeline

Data Collection

MOCAP **EMG** GRF

OpenSim with Upper Body Model [3]

Shoulder Joint Level Demand Analysis

Key Details

Shelf stacking/holding task

Dynamic and static motion of load for 1x arm

3x Regions of interest

- A Close Sagittal
- B Extreme Sagittal
- C Extreme Frontal

3x Interaction loads

- High 3.75 kg (1 gallon jug)
- Medium 1.78 kg (drill)
- Low 0.2 kg (small object)

Workspace Location

Interaction Loads

Motion Videos

Kinematic Results N=5 **Shoulder Joint Angle**

Kinetic Results N=5

Shoulder Joint Power

Discussion

- Demand shows an increasing trend with higher interaction load
- Large Moment and Power peaks during the dynamic (brown region) phase
- Static phase has no power, but persistent torque to compensate gravity
- Net Work of the Shoulder Joint should be at/close to zero for a full return motion
- Work tied to the overall potential energy of load

Acknowledgements

This work is supported by NSF under Grant Award Number 2202862.

References

[1] Crouch et al. (2020), J. App Biomech. 36(2); [2] Nuckols et al. (2020), PLOS ONE 15(8); [3] Saul et al (2015), Comp. Methods in Biomech & BioEng 18(13); [4] Molinaro et al. (2024) Nature 635(8038).