BIOMECHANICAL ANALYSIS OF THE SHOULDER UNDERGOING INDUSTRY
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Upper Body Exoskeleton (EXO) Technologies have seen developmental progress, but __Shoulder Joint Angle
not widespread in industry. Challenges are: A £ g
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* EXOs must account for user and task (Multi DOF and Workspace) or issues will
arise (poor ergonomics, improper assistance, non-acceptance) [1]
* EXO development lacks a “formal roadmap” to inform designs [2]
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To aid in developing Upper Body EXOs:
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 Gather instrumented data (EMG, MOCAP, GRF) to drive computational models . .
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