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SUMMARY 

Manual labor professions require workers to perform tasks which comprise their 

musculoskeletal integrity and expose them to heightened risks of injury from overexertion. 

in professions It is known that repetitive load carriage, especially during asymmetric 

walking, lifting, and twisting among other locomotion modes can lead to the development 

of tissue and joint injuries from overexertion.  While it is well-documented that joint 

kinematics, joint kinetics, and muscle activity can be indicators of injury predisposition, we 

believe that internal joint loading, joint contact forces (JCFs), may provide an alternative, 

under-the-skin, perspective on potential biomechanical biomarkers indicative of informing 

about the risks of joint injuries. There is a critical gap in understanding the internal joint 

loading experienced by the joint capsule from nearby tissues (i.e. muscles, ligaments, etc.) 

and external factors during manual labor tasks, as well as how injury mitigation solutions 

such as wearable technology influence JCFs and predisposition to injury.  

This dissertation explores the relationship between joint-level and muscle-level 

mechanics and effort and how these influences resolve into the internal joint state of JCFs 

across a myriad of manual labor-inspired movements and tasks. The overarching objectives 

were to investigate whether assistive and informative intervention strategies can help 

alleviate high, and potentially hazardous JCFs. In Chapter 2, we develop a framework that 

maps JCFs to industry-relevant lifting tasks. With the use of computational 

neuromusculoskeletal solvers to optimize estimates of muscle forces and JCFs, we 

identified a subset of work-specific movements that expose manual laborers to higher risks 

of injury at their lower back and knee joints. Following this work, in Chapter 3 we 



 xiii 

investigated how the use of exoskeletons affects JCFs in the subset of injurious manual lifting 

tasks identified in Chapter 2. More specifically, we sought to uncover how motorized 

assistance from a knee exoskeleton and passive assistance from a soft, back exoskeleton 

influence internal lower back and knee joint loads. In Chapter 4, we leverage analyses 

performed in Chapters 2 and 3 to measure how wearable sensor outputs from muscles, 

segments, and ground reaction forces can inform users of internal joint forces during various 

movements as a final mitigation strategy. Using a deep learning model equipped to self-

identify relevant features which map to estimates of JCFs, key findings demonstrated that 

muscle activations were imperative to reliable normal JCF estimation. The wearable sensors 

utilized in this work were not adequate inputs for shear JCF estimation; however, we did fin 

d that IMUs were a primary contributor to the better performing shear JCF estimates. All in 

all, this dissertation provides an informative lens on JCFs, a contributing factor to joint 

injuries, and potential effects of wearable technology on internal joint loading. 

 

 

 

 



 
 

 

1 

CHAPTER 1. INTRODUCTION 

Overuse injuries are a persistent health concern in manual labor worksites. In 2020, 

about 301,890 musculoskeletal-related injuries were reported1. In 2021, about 70 million 

workdays were lost due to work-related injuries2. It is estimated that 33 million of those 

days were due to prior injuries, and it is projected that 55 million days will be lost from 

2021’s injuries in the future years to come2. Aside from the detrimental health burden these 

injuries have on the workers, the administrative perspective views workers developing 

injuries as a performance inhibitor and a financial loss. In fact, such injuries prove to be 

severely costly for corporations as the average amount of workers’ compensation per incident 

is around $41,3532. Unfortunately, stress and strain to tissues and bone caused by 

overexertion remains a leading cause of injury3 in manual material handling, manufacturing, 

and patient transporting professions4. Workers in such manual labor professions may 

perform repetitive, asymmetric, and physically taxing movements5 such as twisting, 

pushing, or bending while handling heavy loads6–8 which may put them at risk for acute 

injury when exposed to extreme peak loading or chronic overuse injury with prolonged 

exposure to joint and tissue loading9,10. Workplace musculoskeletal disorders such as low 

back pain and osteoarthritis in the knees can be physically and financially burdensome to 

members of the working class and continues to have a negative impact on society as we 

age11,12. In 2020, the Bureau of Labor Statistics (2021)13 reported about 29,700 knee and 

62,540 back injuries in the private, local, and state government sectors. These findings 

ultimately support the critical need to incorporate technological interventions that 
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can offload the forces experienced within the joint capsule and can reduce overall risk 

of injury occurrence.  

To accomplish this goal, we need a metric which captures these internal joint forces at 

the joint capsule: joint contact forces (JCFs). JCFs inform us about internal loading at the 

bone as a result of forces produced by muscles, ligaments, tendons, and external loads14. 

More specifically, axial compression and shearing forces are damaging to the 

musculoskeletal system15, leading to tissue weakening and strain, microdamage, or fractures 

to the bones16,17 depending on the magnitude and exposure time to joint loading. However, 

it is difficult and surgically invasive to directly measure biological joint contact force18. 

Fortunately, advances in computational biomechanics allow us to utilize musculoskeletal 

modeling practices to reproduce manual lifting tasks19,20 and estimate joint loading21–24. 

Humans lack sensory organs which detect and alert of harmful internal joint loading, so 

knowledge of internal joint contact forces sheds light on bone deformation and micro-

damage inflicted by repetitive and prolonged mechanical loading and can serve as a metric 

of injury25. For example, knee joint contact forces are a potential metric for monitoring the 

onset of osteoarthritis prior to ACL injury and after reconstruction surgery due to structural 

changes in cartilage1,26,27. Also, overexertion in manual lifting tasks is considered one of the 

most prominent contributors to low back pain in the workplace28–30. Thus, there is a need 

for a framework that details joint contact forces across work- specific tasks and 

highlights critical loading tasks in need of intervention to inform future joint loading 

mitigation strategies. While manual lifting has been commonly investigated with metrics 

such as kinematics, kinetics, and some internal loading, few studies have investigated joint 
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contact forces in both the back and knee to assess the susceptibility of injury across a 

variety of work-specific tasks. Aim 1 (Chapter 2) addresses effects of lifting asymmetry, 

ascent-phase versus descent-phase, and operating height on JCFs. This work also surveys 

trending behavior across tasks in joint load distribution between the back and knee across 

the manual lifting conditions. Thus, severing as foundational work to identify how JCFs in 

specific tasks should be mitigated by assistive technology. 

Exoskeletons are shown to be helpful at the muscle-tendon properties level31 and at 

reducing user joint loading32 and metabolic cost31,33 during locomotion and manual labor 

tasks. These findings have influenced the slow adoption of such devices in workplaces 

where manual labor tasks that involve twisting and lifting high loads are associated with 

high worker injury rates34. Both active and passive commercial exoskeletons are designed 

to offset joint loading by providing assistive torque either in parallel or perpendicular to 

the body. Such assistance reduces user muscle forces and activations35,36. Previous research 

has proposed that joint kinematics, joint kinetics, and muscle activity can indicate injury 

predisposition; however, few studies have investigated how exoskeletons affect internal 

joint loading in manual labor tasks. Further, the impact of exoskeletons on joint contact 

forces is largely unknown due to the inability to measure in vivo and the complex 

musculoskeletal modeling tools required for estimation. Aim 2 (Chapter 3) will address 

these gaps by modeling the assistive torques as applied forces to the body and investigate 

how wearable devices affect internal joint loading in work-specific lifting tasks. This will 

provide insight on the benefits of exoskeletons or lack thereof for mitigating overexertion 

injuries. Results could influence the adoption of exoskeletons into the workplace and begin 
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discussions on whether the cost of exoskeletons compare to the cost of workers 

compensation. This work can also inform the design of exoskeletons and controllers to 

mitigate hazardous joint loading by helping people move or teach them how best to move. 

Wearable sensors are useful in measuring biomechanical states and providing insight 

into other relevant metrics. More specifically, IMUs, EMG, and force sensors are highlighted 

for their ability to monitor musculoskeletal health, risks, and overall user performance for 

the intention of refinement37.  For example, IMUs, could be a key proponent to addressing 

injury risk by prescribing user-independent stretching regimen’s needed before a daily 

workload38, providing preventative biofeedback37, monitoring the ratio between acute and 

chronic workload39. Historically, in response to growing concerns of unsafe working 

conditions, companies became privy to the need for reform to working conditions and 

procedures40. Since then, companies have gone on to incorporate strategic health and risk 

assessments41 and training, screenings to ensure workers meet task requirements, required 

personal protective equipment (PPE), and hire qualified ergonomists to enforce Occupational 

Safety and Health Administration (OSHA) restrictions to keep the workplace safe42. This 

initiated thorough documentation of workplace conditions and employee performance, 

delegation of  ergonomic teams  to improve workplace conditions, and developing training 

protocols for employees to be aware of injury risks and ways to mitigate these risks43. Manual 

labor personnel may also be encouraged to wear insufficient bracing to alleviate pain and 

prevent injury. Despite these measures, laborers are still getting hurt. Therefore, there is a 

need to leverage the capabilities of wearable sensing to truly combat the remaining 

prevalence of injuries within the workplace.  
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Machine learning has shown promising performance in measuring biological 

parameters that were once complicated and time-intensive to compute. A growing trend to 

use wearable sensors such as pressure insoles and/or inertial measurement units (IMUs) to 

estimate joint moments44, internal bone forces45, and even injury risks46,47 is paving a way 

to probe the relationship between injury mitigation and internal joint contact forces. 

However, there still is a considerable amount we do not know regarding the most robust 

and widely applicable model to achieve such goals. Aim 3 (Chapter 4) will address these 

gaps by creating assistive technology through a deep learning model, the temporal 

convolutional network (TCN) that can help estimate joint contact forces. Through using 

subject-dependent data which has already been heavily processed via musculoskeletal 

modeling pipelines and using these outputs (JCFs) as ground truth for the TCN, we are able 

to train a model with data enriched with variability that would support the model’s 

capability to personalize JCFs estimations across diverse populations48. This advantage 

hereby opens the possibilities of utilizing simulated wearable sensor data, real sensor data 

in the future, to estimate JCFs in the future. This work could inform the establishment of 

biofeedback systems to deliver real-time sensory information regarding joint contact forces 

during working tasks49, assist clinicians with diagnoses without the need for expensive 

imaging equipment, inform implementation joint contact force estimation models into 

device controllers to provide preventative assistance against high loading in a given task. 

The long-term goal of this dissertation is to address the intersectionality of the 

aforementioned efforts as a means mitigate potentially hazardous JCFs across tasks 

commonly encountered in a daily workload of a manual labor employee. To accomplish 
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this, there are three primary aims to this dissertation: 1) to characterize and identify how 

lifting weights from different heights and degrees of twisting influence JCFs at the L5/S1 

and knee joints, 2) to measure how an active knee exo and passive back exo  influence 

internal joint loading, and 3) determine how a minimized wearable sensor system-informed 

machine learning intervention can support JCF estimations at the knee joint. The original 

research outlined in these aims are expanded upon across 3 chapters.  

 To obtain these goals, my objective is to evaluate joint contact forces at the knee 

and lower back during industry-relevant lifting conditions with (1) no exoskeleton, (2) an 

active knee exoskeleton, and (3) a passive back exoskeleton and to estimate joint contact 

forces using machine learning techniques. My central hypotheses are that (1) exoskeletons 

will reduce internal joint contact forces and (2) wearable device-inspired machine learning 

will effectively estimate joint contact forces during manual lifting tasks. Furthermore, the 

strain of muscle forces on the joints will indirectly lower net joint contact forces by 

reducing compressive contact forces; thus, lowering injury risk. The use of wearable 

sensors (e.g., inertial measurement units (IMUs), EMG, etc.) will provide useful kinematic 

and kinetic data to train a machine learning model to map to joint contact forces. 

Chapter 2, which is a submitted manuscript in the Journal of Applied Biomechanics, 

illustrates a framework that relates JCFs in a lower back joint (L5/S1) and knee joint to an 

assortment of symmetric and asymmetric manual lifting tasks. This work identifies a subset 

of work-specific movements that exposes workers to higher joint loads, and potentially 

higher risks of injury. This chapter also highlights the distribution of internal joint loads 
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between the lower back and knees during these tasks which could inform ergonomists, 

clinicians, and engineers on whether the back and/or knee require supplemental assistance 

and in which tasks to provide the support. 

Chapter 3 contains work I intend to submit to IEEE Transactions on Medical 

Robotics and Bionics. This study addresses the second aim of incorporating wearable 

devices, exoskeletons, in the manual lifting conditions that elicited higher JCFs at the lower 

back joint (L5/S1) and knee joint in Chapter 2. With the knowledge of how exos can offload 

muscle-level and external joint-level factors, we sought to understand if and how the use 

of exos will decrease JCFs as the joint they are prescribed to (i.e., knee device assisting 

knee joint loading and back device assisting lower back spinal loading). This aim also 

explores how and if exos may indirectly reduce JCFs of the unassisted joint (i.e., back 

device assisting knee joint loading and knee device assisting lower back spinal loading. 

This work will support existing literature that exhausts the benefits of using wearable devices 

at the whole-body, muscle, and joint levels by shining a light on their impact on mechanical 

bone loading and its relation to injury mitigation. Also, this aim can inform the 

implementation of work-inspired exoskeletons to increase safety in manual labor 

professions. 

Chapter 4, which comprises of work I intend to submit to the IEEE Transactions on 

Biomedical Engineering or Annals of Biomedical Engineering, probes a different injury 

prevention strategy: looking to deep learning to support JCF estimations without the use 

of neuromusculoskeletal modeling. With knowledge of the utility of wearable sensors 
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such as IMUs, EMG, and pressure insoles to inform us of other biomechanical metrics, 

our goal was to find out the most minimalistic combination of sensor types needed to 

support the TCN’s capability to reliably estimate normal and shear JCFs. The structure of 

the model utilized in this aim’s analyses supports the generalizability of JCF estimations 

across a broad array of dynamic, and manual labor-inspired tasks.  This work shows 

promise to a trajectory of JCF estimative research to provide users with instructional 

feedback on mechanical modifications to influence and, hopefully, lower JCFs. This 

approach also serves as a cost-effective tool that can inform rehabilitative strategies. 

Altogether, the studies outlined in this dissertation will positively contribute to 

existing literature by: 1) surveying and characterizing the effects repetitious twisting and 

bending during manual lifting on JCFs, 2) establishing a cost-benefit of incorporating 

exoskeletons on the classified joint loading “hot spot” movements of manual lifting 

conditions, and 3) assessing the ability of a minimal wearable sensor set to provide 

reliable estimates of internal joint forces. It is my hope that this dissertation will inspire 

further advancement in joint injury intervention strategies and experimentations to 

alleviate the occurrences of loading induced injuries not only in the workplace, but also 

in various environments. Additionally, this work can potentially influence wearable 

device design to best suit user needs and ergonomic practices in the workplace to further 

prevent injuries. 
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CHAPTER 2. CHARACTERIZE JOINT CONTACT FORCES 

ACROSS INDUSTRY-RELEVANT LIFTING TASKS AND 

JOINTS 

The first work of my dissertation examines how various manual lifting postures 

influence internal joint loading in the lower back and knees. This work has been submitted 

to the Journal of Applied Biomechanics titled “EMG-informed estimates of joint contact 

forces within the lower-back and knee joints during a diverse set of industry-relevant 

manual lifting tasks”. At this time, this article’s status is pending after having responded to 

reviewer’s feedback. That article is outlined in this chapter. 

2.1 Abstract 

 Repetitive manual labor tasks involving twisting, bending, and lifting commonly 

lead to lower back and knee injuries in the workplace. To identify tasks with high injury 

risk, we recruited N=9 participants to perform industry-relevant, two-handed lifts with an 

11 kg weight. These included symmetrical/asymmetrical, ascending/descending lifts that 

varied in start-to-end heights (knee-to-waist and waist-to-shoulder). We used a data-driven 

musculoskeletal model that combined force and motion data with a muscle activation-

informed solver (OpenSim, CEINMS) to estimate 3D internal joint contact forces (JCFs) 

in the lower-back (L5/S1) and knee. Symmetrical lifting resulted in larger peak JCFs than 

asymmetrical lifting in both the L5/S1 (+20.2% normal (p < 0.01), +20.3% shear (p = 

0.001), +20.6% total (p < 0.01)) and the knee (+39.2% shear (p = 0.001)) and there were 
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no differences in peak JCFs between ascending vs. descending motions. Below-the-waist 

lifting generated significantly greater JCFs in the L5/S1 and knee than above-the-waist lifts 

(p < 0.01). We found a positive correlation between knee and L5/S1 peak total JCFs (R2 = 

0.60, p < 0.01) across the task space, suggesting motor coordination that favors sharing of 

load distribution across the trunk and legs during lifting. 

 

2.2 Introduction 

Workplace musculoskeletal disorders such as low back pain and osteoarthritis in 

the knees can be physically and financially burdensome to members of the working class 

and will continue to have a negative impact on society as they age11,12. One of the leading 

causes of workplace injuries is overexertion in tasks such as manual materials handling 

(MMH), manufacturing, and patient transport4. Workers in manual labor professions may 

perform repetitive, asymmetric, and physically taxing movements5 such as twisting, 

pushing, or bending while handling heavy loads6–8 - putting them at risk for acute injury 

when exposed to extreme peak loading or chronic overuse injury with prolonged exposure 

to joint and tissue loading50. Common approaches to characterize and mitigate injury risk 

in manual lifting have relied on metrics derived from measures of joint kinematics and 

kinetics. Factors such as varying the mass of a lifted object51–54, the size of a lifted object55, 

lifting speed52, lifting technique55,56, stance width and foot position55,57, lowering versus 

lifting58,59, and symmetry versus asymmetry (turning)28,52,53,56,58,60. In sum, external loads 
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on the limb-joints during MMH tasks have been well characterized and helped provide best 

practices to guide lifting techniques that can help avoid injuries.  

Characterizing internal loads on underlying musculoskeletal structures may provide 

a more direct assessment of injury risk than external measures based on inverse dynamics. 

Indeed, joint contact forces (JCFs), a potential biomarker for the onset of osteoarthritis 

prior to ACL injury and after reconstruction surgery due to structural changes in 

cartilage1,26,27, could reveal key underlying changes in cartilage and bone health. Joint 

contact forces quantify the internal loading at bone-to-bone interfaces necessary to support 

the forces produced by surrounding muscles, ligaments, tendons that are necessary to 

counter external loads14. Despite their potential utility, JCFs are impossible to measure 

non-invasively in humans, with only a few examples of direct in vivo measurements of 

JCFs61,62. Furthermore, mechanical analyses that attempt to map net external forces and 

moments to internal joint loads are not straightforward and require estimates of how 

antagonistic muscle forces are coordinated63. Fortunately, advances in computational 

biomechanics make it possible to utilize musculoskeletal modeling practices to reproduce 

MMH tasks in simulation19,20 and estimate JCFs21–24,64. EMG-informed solvers can reduce 

errors in JCF estimation from purely simulated muscle activation inputs by accounting for 

muscle co-activation65,66, which is a critical piece of the puzzle given that muscle action 

typically accounts for well over half the joint contact load 67,68. These advanced 

computational tools make it possible to move ‘outside-in’ and evaluate tissue level 

mechanics in the context of highly dynamic movements – enabling monitoring of a new 

set of ‘local’ biomarkers that could offer more precise injury prevention measures. 
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The purpose of this study was to extend limb-joint analyses and establish a 

framework to examine how external loads resolve as three-dimensional JCFs inside limb-

joints during MMH tasks. To bridge this gap, we designed a comprehensive study protocol 

comprised of a diverse set of lifting tasks spanning a range of start-end heights and across 

a range of lift symmetries. In these conditions we collected full body motion data using 

high speed motion capture, external ground reaction forces and electromyography from a 

carefully selected set of muscles around the back and knee. We paired these experimental 

data with state-of-the-art computational modeling, simulation, and optimization techniques 

to evaluate lower-back (L5/S1) and knee joint loads during lifts that varied starting and 

ending heights and lift symmetry, providing insight into potential ‘hot spots’ for injury 

over a wide range of possible lifting situations. We hypothesized that asymmetrical69,70, 

ascending52, below the waist lifts53,71 would induce the highest JCFs at both the L5/S1 and 

knee (H1-3). We expected JCFs at the knee and L5/S1 joints would be proportional to each 

other51,52,71–73, independent of the lifting task (H4) – reflecting a motor control strategy to 

avoid overloading the L5/S1 or knee by distributing loads across the limb-joints. Studying 

the effects of MMH tasks on multi-joint internal joint loading will enable a comprehensive 

mapping from task space to injury risk during industry-relevant lifting tasks. In doing so, 

we hope to provide a greater awareness of the susceptibility to eventual tissue and bone-

damaging injuries in the workplace that can be used as a prophylactic tool to avoid 

prolonged exposure to critical loading in the workplace. 
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2.3 Methods 

2.3.1 Participants 

 This study was approved by the Georgia Institute of Technology Institutional 

Review Board and all participants provided signed consent to the study prior to collection. 

We enrolled nine participants (7 male, 2 female; weight: 80.7 ± 15.0 kg; height: 178.7 ± 

11.1 cm; age: 25.1 ± 2.9 years). Participants were excluded if they had a history of 

debilitating injuries from neurological, musculoskeletal, or cardiovascular conditions that 

prohibited them from successfully performing the manual labor tasks in this study.   

Table 1 – Unassisted lifting study participant demographics. Standard deviation = 
SD. 

Participant Gender Age (years) Height (cm) Weight (kg)  
1 F 24 165.4 67.0 
2 M 24 181.3 90.9 
3 M 23 165.3 60.4 
4 M 24 188.4 86.9 
5 M 29 185.5 102.5 
6 M 26 174.0 73.03 
7 F 25 181.0 64.30 
8 M 30 190.0 85.5 
9 M 21 197.3 95.9 

Mean ± SD 7M / 2F 25.1 ± 2.8 180.9 ± 10.9 80.7 ± 15.0 

 

2.3.2 Experimental Design  

All participants performed 24 different lifts with varied lift start-end heights and degrees 

of twisting (Figure 1).  Start-end height combinations included knee-to-waist (KW), waist-
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to-knee (WK), shoulder-to-waist (SW), and waist-to-shoulder (WS). Symmetric lifting had 

0° of twisting, while asymmetric lifting could be with 90° or 180° of twisting, with turns 

centered around a neutral posture (i.e., 180° lifts started and ended at ±90° from neutral).  

Across conditions, participants lifted a 25 lb. (11.34 kg) dumbbell at their preferred lifting 

speed to fixed shelf positions at knee (17.8 cm (7 in)), waist (72.4 cm (28.5 in)), or shoulder 

(133.5 cm (52.5 in) height. 

Figure 1 - (A) Manual lifting conditions visualized by starting shelf height and 
target shelf position of the weight. During 0° (symmetric) lifts, a single shelf was 
oriented directly in front of participants and weight was lifted to-and-from various 
heights. For both 90° and 180° (asymmetric) lifting, tasks were performed starting 
from both sides of the body: left-starting lifts (clockwise rotation) and right-starting 
lifts (counterclockwise rotation). In 90° lifts, shelves were offset 45° from neutral. In 
180° lifts, two shelves were placed on opposite sides of the participants. The top, 
blue arrows represent above-the-waist lifting conditions: shoulder-to-waist (SW) in 
light blue and waist-to-shoulder (WS) in dark blue. The bottom, red arrows 
represent below-the-waist lifting conditions: knee-to-waist (KW) in dark red and 
waist-to-knee (WK) in light red. (B) Placement of surface EMG sensors. Muscles 
were selected to capture activity from muscle groups salient to the targeted joints 
under study: lower back (L5/S1) and knee. Anterior and posterior muscle groups 
were collected for the torso and legs, but only the right leg was instrumented with 
sensors. 



 
 

 

15 

 Participants wore a full-body reflective marker set to record segment positions 

(Vicon, Oxford, UK, 100Hz). We collected data from fourteen surface electromyography 

(EMG) sensors (Delsys, Natick, Massachusetts, USA, 2000 Hz). EMG sensors were placed 

on the right leg muscles (tibialis anterior, lateral gastrocnemius, rectus femoris, vastus 

medialis, vastus lateralis, bicep femoris, and semitendinosus) and bilaterally on the torso 

muscles (erector spinae, latissimus dorsi, external obliques, and right-only rectus 

abdominis) (Figure 1B). Maximum voluntary contractions (MVCs) were performed by 

each participant preceding the protocol to collect the maximum muscle activations for 

normalization74,75. We used SENIAM to inform sensor placement and MVC collection76. 

We collected ground reaction forces under each foot and each shelf (Bertec, Columbus, 

OH, USA, 2000 Hz).  

2.3.3 Data analysis 

2.3.3.1 Data processing 

 Raw EMG signals were bandpass filtered (20-400 Hz, 2nd order Butterworth), full-

wave rectified, lowpass filtered (6 Hz, 5th -order Butterworth), and half-wave rectified to 

create positively signed envelopes. Finally, the EMG signals were normalized using the 

peak MVC value across three MVC trials. We used the rate of change of ground reaction 

force from force plates on the shelves with a threshold value of 0.10 N/s to detect the start-

end position of the dumbbell and define the initiation-termination time of each lift.  

2.3.3.2 Musculoskeletal analysis 
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We implemented two OpenSim 4.0 (SimTK, Stanford, CA, USA)22 models to 

simulate  experimental lifting trials: Full Body Running (FBR) model77 for knee-joint 

analyses and Lifting Full Body (LFB) model21 for L5/S1-joint analyses. The FBR model 

contains 12 segments with 92 trunk and lower-limb musculotendon actuators, while the 

LFB model contains 30 segments with 238 torso musculotendon actuators. The FBR and 

LFB models have a high resolution of knee and back muscles, respectively, providing 

representative muscle activations and forces from muscles which we collected EMG. To 

accurately simulate our unique lifting conditions, we modified the range-of-motion 

constraints of joints within the arms, torso, pelvis, and legs to allot freedom for the model 

skeleton to match the participants’ movements. Additionally, to account for the external 

load contributions of the 25 lb. weight to internal musculoskeletal states, we added half the 

dumbbell mass to each hand using OpenSim WeldJoint.  

Next, we fitted the two OpenSim models to participant-specific anthropometry 

taken from captured static pose data using the Scaling Tool. We used the Inverse 

Kinematics Tool to calculate joint angles. OpenSim’s Inverse Dynamics Tool computed 

joint kinetics for each participant incorporating the effects of external loads.  We used the 

Muscle Analysis Tool to solve for musculotendon unit (MTU) lengths and muscle moment 

arms.  

Then, we used the Calibrated EMG-Informed Neuromusculoskeletal Modeling 

Toolbox (CEINMS)78 to perform optimization (i.e., simulated annealing) and reduce error 

in joint and muscle-level property estimations. First, the CEINMS Hybrid mode optimized 
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muscle activity over those muscles without experimental data inputs. Then, we used both 

the experimental and simulated muscle excitation signals, musculotendon lengths, and 

muscle moments to calibrate the model by reducing the error between estimated and 

experimental joint moments. The following objective function weighting parameters were 

inspired by those utilized in similar analyses by Molinaro et al.28 to balance muscle 

activations and torque tracking performance: torque tracking (a) = 10,000, muscle 

excitation minimization (b) = 10, and EMG tracking (g) = 1,00028. 

Finally, we used the OpenSim Joint Reaction Analysis Tool, taking CEINMS 

simulated output, to calculate the JCFs. From-time series data, we computed peak and 

integrated values using custom MATLAB scripts. We divided JCFs into normal, shear, and 

total components. We calculated shear and total JCFs using the Euclidean norm of the 

anterior-posterior and mediolateral shear forces and the Euclidean norm of the normal and 

shear forces, respectively. We normalized JCFs by the product of participant mass and 

acceleration of gravity to minimize the effects of performance variance across participants. 

To avoid duplication of data in asymmetrical lifting conditions (90° and 180° turns), we 

compared the forces in clockwise (left-starting) and counterclockwise (right-starting) 

directed lifts and analyzed/presented the trial with the maximum JCF (i.e. the ‘worst case’). 

We reported right-knee JCFs, from the leg instrumented with EMG sensors.   

2.3.4 Injury risk assessment 

To better understand how the JCFs produced in performing this study’s manual 

lifting tasks related to injury risk in the lower back and the knee, we compared the JCFs to 
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injurious joint loading values found in literature. In the lower back, joint loading (moments 

and internal forces) has been used as a determinant of low back pain risk79. A study by 

Anderson showed that compressive forces of at least 3400 N79,80 can lead to an increased 

risk of developing low back pain by 40%80. The National Institute for Occupational Safety 

and Health (NIOSH) went on to recommend this value as a biomechanical criterion in their 

revised lifting equation81, which computes an individual’s estimated lifting capacity and 

tasks which expose them to hazardous joint loading. Shear forces of at least 1000 N79,82–84 

are also believed to contribute to increased risk of low back pain79. In the knees, similar 

metrics of joint loading (moments and internal forces) can be indicative of knee pain or 

disorders such as osteoarthritis85. Studies have observed the extreme limits of knee joint 

loading during blunt trauma experiments which can lead to cartilage degeneration and bone 

fractures86. Haut found that the average contact force of 8500 N led to bone fracturing at 

the patella or femoral condyles87. Kajzer et al. (1999) explained that peak shear forces of 

2400 N at the knee lead to ACL-related ligament damage during lateral impact 

experiments88. In order to relate these values to JCFs in our data, we normalized the injury 

risk threshold peak forces by the average participant weight in Chapter 3 (70 kg multiplied 

by 9.81 m/s2). The resulting values used for injury risk assessment are found in Table 2.  
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Table 2 – Injurious joint loading thresholds for peak and cumulative (integrated) 
JCFs (x BW). 

 Joint Normal JCF  Shear JCF Total JCF 
Peak 

Loading 
L5/S1 4.9 1.4 5.1 
Knee 12.2 3.5 12.7 

Cumulative 
Loading 

L5/S1 489.0 143.6 509.0 
Knee 1220.8 344.7 1269.0 

 

2.3.5 Statistical analysis 

 We employed a two-way repeated measures Analysis of Variance (ANOVA) to test 

for significance of lift symmetry, direction, and start-to-end height on each component of 

the JCFs (H1-3). Subsequently, we performed a post hoc Bonferroni pairwise multivariate 

comparison test to determine statistical significance of differences in JCFs across lifting 

conditions with the threshold for significance set at α = 0.05 (Minitab - Penn State 

University, State College, PA). We used a linear regression model to compute correlation 

coefficients between the L5/S1 and knee JCFs (MATLAB) (H4). 

2.4 Results 

Participants used different postures across lift conditions. Joint kinematics indicate 

asymmetric lifts had greater L5/S1 flexion (sagittal plane), lateral bending (frontal plane), 

and axial rotation (transverse plane) than symmetric lifts. Peak right knee flexion (sagittal 

plane) was less in asymmetric lifts than symmetric lifts across conditions (Figure 2). In 

addition, participants used different kinetic strategies25 to perform lifting tasks (Figure 3). 
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The peak (Figure 10) and integrated (Figure 11) flexion moments about the L5/S1 and right 

knee joints were smaller in asymmetric lifts (90°,180°) compared to symmetric lifts (0°). 

The peak (Figure 10) and integrated (Figure 11) lateral bending and axial rotation moments 

about the L5/S1 joint were greater in asymmetric lifts than symmetric lifts.  

 Muscle activations are an important variable in determining muscle forces, the 

primary contributor to JCFs25,67. Across lifting conditions (Figure 9), the external obliques 

(EO), vastus medialis (VM), biceps femoris (BF), and semitendinosus (ST) all had greater 

peak normalized muscle activations (EMG) in asymmetric (90°,180°) versus symmetric 

lifts (0°). In contrast, the erector spinae (ES), rectus femoris (RF) and lateral gastrocnemius 

(LG), all had greater peak normalized EMG in symmetric (0°) versus asymmetric lifts 

(90°,180°). Latissimus dorsi (LD) and rectus abdominis (RA) muscles had negligible 

differences in their normalized EMG across lifts.  
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Figure 2 - The across-participant averaged time series of knee and L5/S1 
kinematics of knee flexion (A), L5/S1 flexion (B), lateral bending (C), and axial 
rotation (D) during knee-to-waist (KW), waist-to-knee (WK), shoulder-to-waist 
(SW), waist-to-shoulder (WS) lifting conditions. The color opacity of each data 
line increases with the degree turn of lift: from 0° (lightest) to 180° (darkest). The 
haze surrounding each average represents the standard error of the mean. 
Positive joint angles for the L5/S1 and knee flexion components resulted in 
negative values with positive values representing extension. Axial rotation and 
lateral bending components of the L5/S1 joint were positive counterclockwise and 
to the right, respectively. Asymmetric lift (90° and 180°) results shown for inverse 
kinematics are reported from the right starting side, while all knee data is from 
the right, instrumented leg. 
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Figure 3 - The across-participant averaged time series of L5/S1 and knee kinetics of 
knee flexion (A), L5/S1 flexion (B), lateral bending (C), and axial rotation (D) 
during knee-to-waist (KW), waist-to-knee (WK), shoulder-to-waist (SW), waist-to-
shoulder (WS) lifting conditions. The color opacity of each data line increases with 
degree turn of lift: from 0° (lightest) to 180° (darkest). The haze surrounding each 
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average represents the standard error of the mean. A comparative analysis was 
performed across each asymmetric lift (90° and 180°) condition to select data from 
the starting side (right or left) that resulted in greater (worse) joint moments. Knee 
joint moments were reported from the right, instrumented leg. Positive joint 
moments for the L5/S1 and knee flexion components represented greater joint 
flexion. Axial rotation and lateral bending components of the L5/S1 joint were 
positive moving away from the starting side. 

In the L5/S1 joint, asymmetric lifts (90°/180°) resulted in lower normal, shear, and 

total JCFs when compared to symmetric lifts (Figure 4A). Peak normal forces were 7.2% 

(p = 0.046) and 20.2% (p < 0.01) lower in asymmetric lifts at 90° and 180° versus 

symmetric lifts (0°), respectively. Peak shear forces were 20.3% (p = 0.001) and 14.3% (p 

= 0.032) lower for 90° and 180° lifts versus symmetric lifts (0°). Peak total forces were 

7.3% (p = 0.032) and 20.6% (p < 0.01) lower for 90° and 180° lifts versus symmetric lifts 

(0°) (Figure 5A, Table 3). Peak normal, shear, and total JCFs were not different in 

ascending (KW/WS) versus descending (WK/SW) lifts in the L5/S1 joint (Figure 6A). 

Peak normal, shear, and total JCFs were 21.0%, 49.3%, and 23.3% higher in below-the-

waist (KW/WK) than above-the-waist (SW/WS) conditions (p < 0.01) in the L5/S1 joint 

(Figure 7A).   
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Table 3 - Effect of Lifting Rotation and Start-to-End Height on Knee and Lower-
back (L5/S1) Peak Total Joint Contact Forces (x BW) 

Knee 
Rotation (°) Start-to-End Heights 

 KW WK SW WS 
0° 6.71 ± 2.10 7.81 ± 3.53 5.67 ± 1.34 5.16 ± 1.22 
90° 7.82 ± 2.28 8.09 ± 3.16 6.04 ± 1.70 5.54 ± 1.44 
180° 6.93 ± 2.22 7.49 ± 3.04 4.02 ± 1.03 4.08 ± 1.03 

Lower-back (L5/S1) 
Rotation (°) Start-to-End Heights 

 KW WK SW WS 
0° 10.86 ± 3.49 10.01 ± 3.40 8.55 ± 2.95 8.36 ± 2.71 
90° 10.04 ± 2.53 9.71 ± 2.62 7.81 ± 2.00 7.45 ± 1.52 
180° 9.29 ± 2.68 8.28 ± 2.38 6.16 ± 1.92 6.28 ± 1.57 

Figure 4 -- The across-participant average time series for total JCFs in the L%/S1 

joint (A) and knee (B). The four panels illustrate JCFs from each of the independent 

lifting conditions: knee-to-waist (KW), waist-to-knee (WK), shoulder-to-waist SW), 

and waist-to-shoulder (WS).The color opacity of each data line increases with 
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degree of turn: from 0° (lightest) to 180° (darkest). The haze surrounding each line 

represents the standard error of the mean.  

In the right knee, 180° asymmetric lifts resulted in lower normal, shear, and total 

JCFs when compared to 0° and 90° lifts (Figure 4B). Peak normal forces were 17.5% lower 

(p < 0.01), peak shear forces were 39.2% lower (p < 0.01). Peak total forces were 18.1% 

lower (p < 0.01) in 180° versus 90° lifts (Figure 5B, Table 3). Peak shear forces in the knee 

were 42.1% greater in descension versus ascension lifting tasks (p < 0.01) (Figure 6B). At 

the knee, peak normal, shear, and total JCFs were 29.6%, 72.8%, and 32.0% higher in 

below-the-waist versus above-the-waist lifts (p < 0.01) (Figure 7B).  

 

Figure 5 - The across-participant averaged peak normal, shear, and total JCFs in 
the (A) L5/S1 joint and (B) knee as explored in the first hypothesis (H1). The bars 
represent the JCF value averaged across the four lift conditions (KW, WK, SW, and 
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WS) for each of the three lift degrees (0°, 90°, and 180°) in gray. Independent values 
for each lift condition are labeled as circles in the corresponding color (KW – red, 
WK – pink, SW – dark blue, WS – light blue). Injury risk thresholds for the L5/S1 
joint (estimated from 79,80,83,84,88) and knee joint (estimated from 86–88) are 
represented by orange and green dashed horizontal lines, respectively (see Table 2). 
Significantly different groups are denoted with an asterisk.  Statistical significance 
across all conditions concluded when α = 0.05. 

There was a positive linear correlation (R2 = 0.60, p < 0.01) between L5/S1 and 

knee and JCFs. That is, larger knee contact forces were associated with larger L5/S1 

contact and vice versa (Figure 8).  

 

2.5 Discussion 

The purpose of this study was to go beyond limb-joint analyses and establish a 

framework to examine how external loads resolve as three-dimensional JCFs inside limb-

joints during MMH tasks. Specifically, to gain insight into potential for injury risk from 

exposure to acute peak loading during repetitive, asymmetric, and physically taxing 

movements5, we characterized both lower back (L5/S1) and knee joint loads in 

occupational MMH lifting tasks across four different starting positions and three degrees 

of twisting (Figure 1). We hypothesized that asymmetrical (H1), ascending (H2), below 

the waist (H3) lifts would induce the highest JCFs at both the back and knee. Surprisingly, 

our data did not support H1 and H2 as asymmetric (180 lifts had lower peak normal, shear, 

and total JCFs than 0 and 90 lifts (Figures 4, 5) and lifting descension (WK/SW) tasks had 

higher peak shear JCFs only at the knee compared to ascension (KW/WS) tasks (Figures 

4, 6). In support of H3 and H4, we found that below-the-waist lifting tasks (KW/WK) had 
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higher JCFs than above-the-waist (SW/WS) lifting tasks for both joints (Figure 7) and the 

knee and L5/S1 peak total JCFs had a positive linear correlation across the task space 

(Figure 8). 

Figure 6 - The across-participant averaged peak normal, shear, and total JCFs in 

the L5/S1 joint (A) and knee (B) as explored in the second hypothesis (H2). The bars 

represent the JCF value averaged across the three lift degrees (0°, 90°, and 180°) for 

both the ascension (KW, WS) and descension (WK, SW) lifting tasks in orange. 

Independent values for each lift degree are labeled as circles in the corresponding 
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color. Significantly different groups are denoted with an asterisk. Statistical 

significance across all conditions concluded when α = 0.05. 

 

2.5.1 L5/S1  

We anticipated asymmetrical lifting would generate more injurious JCFs than 

symmetrical lifting (H1) in the L5/S1 joint due to elevated shear forces caused by a shift 

in segmental centers of mass and increased external loading from the hands holding a 

weighted object53. However, our results suggest that symmetric lifting actually induced 

higher peak normal, shear, and total JCFs than asymmetric lifting across conditions (Figure 

4, Figure 5A). Instances of greater lumbar flexion (Figure 2) aligned with increases in peak 

JCFs (Figure 4) – a postural shift that causes increased external loading and concomitant 

increases in muscle activations to stabilize the body, resulting in higher JCFs. Indeed, peak 

muscle activations, primarily from the erector spinae (ES), and peak L5/S1 joint moments 

in the sagittal plane were both greater in symmetric lifting than asymmetric lifting (Figures 

10, 11). In addition to these findings, we believe local peak JCFs are likely caused by large 

moment arms created through constraints within the execution of each lifting task. 

Participants in the study were constrained to place one foot on each force plate, configuring 

symmetric lifts side-by-side and asymmetric lifts diagonally adjacent. These stance 

configurations likely affected how they transported the weight from the initial to terminal 

shelf position. In 0° lifts, shelf placements caused participants to stand further away and 

extend the weight further from their center of mass. Thus, creating a larger moment arm 
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about the L5/S1 joint, larger external moments about the lower back, and ultimately higher 

compressive and shear forces in the joint. In contrast, the asymmetric lifts (90°,180°) did 

not present shelf obstructions, and participants could hold the weight closer to their torso 

throughout the lift. This technique yielded smaller moment arms between load and L5/S1 

joint and resulted in lower compressive and shear forces in the joint55. 

Figure 7 - The across-participant averaged peak normal, shear, and total JCFs in 

the L5/S1 joint (A) and knee (B) as explored in the third hypothesis (H3). The bars 

represent the JCF value averaged across the three lift degrees (0°, 90°, and 180°) for 

both the below-waist (KW, WK) and above-waist (SW, WS) lifting tasks in orange. 

Independent values for each lift degree are labeled as circles in the corresponding 
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color. Significantly different groups are denoted with an asterisk. Statistical 

significance across all conditions concluded when α = 0.05.  

 We predicted that ascending lifts would induce greater contact forces at the L5/S1 

joint than descending lifts (H2) because we assumed the lumbar extension moment 

generated to counteract gravitational and inertial forces, both from the participant and the 

added mass being lifted, would be higher during ascending lifts52 (i.e., accelerating upward 

against gravity would be more demanding). However, we found no significant differences 

in joint loading when comparing ascension vs. descension (Figure 6A). We found no 

significant difference in lifting durations between ascension (2.78 s) and descension (2.76 

s). The weight lifted was likely did not influence the rate of the lifts in our study or cause 

inertial effects as large as reported in other studies where participants lifted up to 40 kg52,56.   

We expected that below-the-waist lifting conditions (KW and WK) would cause 

higher JCFs than above-the-waist (SW and WS) lifting at the L5/S1 joint (H3) due to 

greater flexion in the trunk, knees, and hips71. In flexed postures, higher external moments 

are needed to compensate for poor mechanical advantage against body weight, shifts in 

centers of mass across segments53, and the load of the weighted object in participants’ 

outstretched hands. Our results supported this rationale with below-waist lifts showing 

higher peak and integrated L5/S1 external moments (Figures 10, 11) to go along with 

higher peak JCFs (Figures 4 and 7A). This confirms the intuition that lifts with higher 

degrees of trunk flexion places people in a vulnerable and weaker posture89 that leads to 

higher shear forces60 and increased injury risk.  
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Our data support that normal, shear, and total JCFs at the L5/S1 joint exceeded the 

literature-supported tolerance thresholds79–83 (Figure 5, Table 2). This suggests that similar 

lifting tasks performed by manual labor workers could lead to an increased risk of 

developing musculoskeletal disorders such as low back pain81. Therefore, we would 

recommend decreased frequency of performing such tasks, introducing effective breaks, or 

assistive mitigation strategies90 to offset the joint loads to be below threshold values. 

2.5.2 Knee  

We expected that adding asymmetrical twisting to a given lift would induce axial 

moments about the joint91 and increase shear forces in the knee leading  to higher JCFs 

when compared to symmetrical lifting (H2). Contrary to our expectation, asymmetry in a 

lift had little effect on knee joint loading. We propose two potential explanations: (1) the 

constrained foot placements altered participants’ squatting stance width and/or (2) the 

nonintuitive mechanics of the quadriceps in deep knee flexion. Escamilla et al.57 found that 

knee (tibiofemoral) compressive forces were 16% greater in wider stances than narrow 

stances. Following this line of reasoning, we saw that on average, participants had wider 

stances and greater contact forces in 90° asymmetrical lifts (Figure 5B) compared to the 0° 

and 180° lifts. On the other hand, according to Nisell and Ekholm92, a “wrapping effect” 

results from the contraction of the quadriceps muscle pulling the patellar tendon posteriorly 

towards the femur (i.e., intercondylar fossa) in very deep flexion which can act to alleviate 

knee joint loading by providing an additional contact point for force distribution and 

transfer93. In addition, literature suggests that peak knee compressive joint forces occur 
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around 90° knee flexion in squatting93–95. This further supports our contention that the 

biomechanical technique that participants used when lifting symmetrically resulted in 

deeper knee flexion and incited the indirect benefits of the wrapping effect to reduce peak 

contact forces.  

During squat descension the knee extensor moment acts to control deceleration to 

levels below that induced by gravitational forces. In theory, this external mechanical 

demand should be less than that in ascent, when the extension moment must first overcome 

gravitational forces before it can accelerate the limbs – and as a result we expected JCFs 

to be lower in descent vs. ascent (H2). Surprisingly, we found little difference in JCFs 

between ascending and descending lifts at the knee. Only shear forces showed differences, 

with statistically greater contact forces appearing in descension versus ascension (Figure 

6B), potentially due to the inertial effects of the added mass being lifted. These results 

agree with the findings of Dahlkvist et al.96 who also observed similarities in knee joint 

forces between squats in descent and ascent. De Looze et al.58 explain that similar muscle 

activity in ascent and descent lead to loading similarities but suggest that descending tasks 

are more predisposed to injury occurrence due to muscle lengthening during loading. 

Similarly, Van Rossom et al.97, found that medial knee (tibiofemoral) peak and average 

shear forces are greater in stair descent than in stair ascent which further solidifies the idea 

that the momentum of deceleration leads to greater JCFs. Taken together, we interpret these 

studies to suggest that lifting may be safer than lowering heavy weight if the goal is to 

reduce joint loading on the knees.  
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Our results support our hypothesis that below-the-waist lifting (KW and WK) 

would generate higher contact forces than above-the-waist (SW and WS) lifting for knee 

(H3) (Figure 7B). Delisle, Gagnon, and Desjardins98 found that minor knee flexion 

alleviates some stress from the L5/S1 joint in lifting. Indeed, we observed that above-the-

waist lifting conditions in this study were performed with only slight knee flexion 

compared to below-the-waist lifts. In a nearly upright posture, activations and forces of the 

quadriceps (knee extensors), hamstrings, and gastrocnemius (knee flexor) are known to be 

relatively quiescent 96, yielding smaller knee JCFs than in below-the-waist lifting. 

Our data support that normal and total JCFs at the knee joint are below the 

literature-supported tolerance thresholds86–88 (Figure 5, Table 2). However, KW lifts cause 

shear knee JCFs to exceed the tolerance threshold (Figure 5, Table 2). This suggests that 

KW lifting tasks performed by manual labor workers could lead to an increased risk of 

developing degenerative musculoskeletal disorders such as osteoarthritis85. Consequently, 

we would recommend decreased frequency of task performance or intervention tools90 

which offload knee shearing forces to be below threshold values. 
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Figure 8 - Linear regression comparing peak total (net) contact forces between the 
L5/S1 and knee joints as explored in the fourth hypothesis (H4). All lift conditions 
(KW, WK, SW, WS) and degrees of turn (0°, 90°, 180°) combinations for all nine 
participants are included in the regression analysis. Each participant’s 
corresponding datapoints are represented by the smaller shapes, while the larger 
shapes represent across-participant averages for the conditions. 
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2.5.3 Knee and L5/S1 load distribution 

In this study, we allowed participants to lift without a pre-defined technique to 

assess the effect of natural repetitive lifting on internal joint loading and participants 

seemed to prefer movements that traded-off loads in lower-back and knee. We found that, 

across all lifting tasks, peak JCFs between the L5/S1 and knee joints scaled linearly (Figure 

8) perhaps reflecting a motor control principle to limit peak loading at any one joint. Studies 

have confirmed that posture is an important factor52,71 which can influence load distribution 

across the body or off-loading away from a joint91 in lifting tasks. Lifting techniques, such 

as stoop (backlift) versus squat (leg lifting)56,58,89,99–101, induce postural constraints that can 

bias applied external loads and joint moments91. For example, studies have shown that 

lifting form is user-specific and is dependent on the starting height of the movement, but 

also the trunk, knees, and hips become more kinematically coordinated in below-waist 

lifting; hence why often the preferred lifting technique is a blend between stooping and 

squatting51,72. Along these lines, Splittstoesser et al.102 conducted a lifting study while 

kneeling, fixing the role of the knee joint. Interestingly, they found that without 

contributions from the knee to perform the lift, moving loads to positions above the waist 

led to greater compressive forces in the back. Thus, highlighting the potential importance 

of coordinating lower-limb joints to reduce loading in the lower back71. Indeed, Bejjani et 

al.73 concluded that both the back and the knees must bend about 60° and 90°, respectively, 

to reduce the average force distributed between both joints; thus posing the question if 

individuals might naturally opt for lifting postures which produce lower average JCFs.  
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2.5.4 Limitations  

 There are several limitations which could have affected our experimental outcomes. 

We controlled the weight being lifted (11.34 kg), lifting conditions (starting-ending 

positions and degree of turn), and foot placement; however, the rate of lifting, consistency 

in reach distance from shelf, and stance width are all factors which were loosely regulated 

and may have contributed to variance in our results. We collected EMG from 14 muscles 

across the torso and legs, limiting CEINMS to simulate most muscle activity. Knee JCF 

results were focused on the right, EMG-instrumented leg, but we expect similar forces on 

the left knee. Also, the lack of female representation in this study restricted us from 

investigating the effects of sex on JCFs.  

 Lastly, utilizing discrete tolerance thresholds to relate the JCFs shown in this study 

to injury risk does not capture as many nuances of the task which largely affect the joint 

loading risks. Evaluation tools such as the revised NIOSH lifting equation81,103 take into 

account critical features104 like vertical and horizontal distance of the lifting weight 

(moment arms) and the asymmetrical lifting angle to better characterize the lifting capacity 

of a person for that task and if a task is potentially harmful to their lower back.  We would 

recommend utilizing a more complex injury risk equation or assessment tool to compare 

its ability to measure and identify hazardous JCFs.   
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2.6 Conclusion 

 This study investigated how JCFs in the knee and lower-back (L5/S1) vary during 

manual lifting tasks. We found highest JCFs in symmetric (i.e., load straight in front of the 

body), below the waist lifting tasks.  Taken together, our results suggest that asymmetric 

lifting can actually reduce JCFs in the lower back and knee when compared to moving 

loads straight in front of the body. Interventions to reduce JCFs during heavy lifting should 

emphasize transporting weight above the waist or close to the body, while encouraging 

postures that minimize trunk and knee flexion (i.e., small external moment arms). 

Therefore, asymmetrical twisting and lifting may not be as hazardous to joint loading. 

Lastly, we found that JCFs were proportionally distributed across knee and lower back 

joints, suggesting that preferred lifting techniques might be selected to balance JCFs across 

joints and avoid local overloading – a motor control principle indicating a trade-off that 

might be leveraged by assistive technology applied at one joint (e.g., back) to protect 

another (e.g., knee).  
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2.9 Supplementary Figures for Chapter 2 

 

Figure 9 - The across-participant averaged time series of normalized muscle activity 
in relevant muscles to the back (ES- right erector spinae, LD – right latissimus 
dorsi, EO – right external oblique, RA – right rectus abdominis) and the knee (RF – 
right rectus femoris, LG – right lateral gastrocnemius, VM – right vastus medialis, 
BF – right biceps femoris, ST – right semitendinosus) during knee-to-waist (KW), 
waist-to-knee (WK), shoulder-to-waist (SW), waist-to-shoulder (WS) lifting 
conditions. The color opacity of each data line increases with degree turn of lift: 
from 0° (lightest) to 180° (darkest). For ease in visualization, the left counterparts of 
back-relevant muscles were excluded, as well as tibialis anterior for the knee. 
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Experimentally collected EMG data is reported as the average and the standard 
error of the mean of the adjusted EMG signals reconfigured via CEINMS are 
illustrated by the surrounding haze to confirm that the corresponding muscle forces 
from activations used to compute joint contact forces remain consistent to those that 
are experimentally collected. 

 

 

Figure 10 - The across-participant averaged peak normal, shear, and total joint 
moments in the knee and L5/S1 joint as explored in the first hypothesis (H1). Gray 
bars represent the joint moments averaged across the four lift conditions (KW, WK, 
SW, and WS) for each of the three lift symmetries (0° =light gray, 90°, and 180°= 
dark gray). Independent values for each lift condition are labeled as circles in the 
corresponding color (KW – red, WK – pink, SW – dark blue, WS – light blue). 
Significantly different groups are denoted with an asterisk.  Statistical significance 
across all conditions concluded when α = 0.05. 
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Figure 11 - The across-participant averaged integrated normal, shear, and total 
joint moments in the knee and L5/S1 joint as explored in the first hypothesis (H1). 
The bars represent the joint moments averaged across the four lift conditions (KW, 
WK, SW, and WS) for each of the three lift degrees (0°, 90°, and 180°) in gray. 
Independent values for each lift condition are labeled as circles in the corresponding 
color (KW – red, WK – pink, SW – dark blue, WS – light blue). Significantly 
different groups are denoted with an asterisk.  Statistical significance across all 
conditions concluded when α = 0.05. 

 

  



 
 

 

42 

CHAPTER 3. ASSESS THE EFFECTS OF EXOSKELETONS ON 

JOINT CONTACT FORCES ACROSS INDUSTRY- RELEVANT 

LIFTING TASKS AND JOINTS  

The second work of my dissertation examines the effect of an active knee exo and a 

passive back exo on internal joint loading in the lower back and knees during manual 

lifting. This work is currently undergoing internal review and we intend to submit to IEEE 

Transactions on Medical Robotics and Bionics and is tentatively titled “Offsetting The 

Load: Can Exoskeletons Mitigate Injury Risk During Industrial Lifting Tasks?”. The 

manuscript is outlined in the following chapter. 

3.1 Abstract 

 Due to the prevalence of repetitive lifting, twisting, and bending tasks in the 

workplace, interventions are needed to reduce the occurrence of musculoskeletal injuries. 

Exoskeletons could be that solution, but we have yet to understand how they could reduce 

injury risk resulting from hazardous internal joint loading. To quantify exoskeletons’ 

influence on joint loading, we recruited N=10 participants to perform two-handed manual 

lifting of an 11 kg weight while donning (active knee and passive back (HeroWear)) and 

doffing an exoskeleton. The lifting captured combinations of asymmetrical/asymmetrical, 

lifting and lowering between knee and waist height. We implemented musculoskeletal 

modeling (OpenSim, CEINMS) to integrate kinematics and kinetics with EMG-informed 

muscle force approximations to estimate knee and lower-back joint contact forces (JCFs). 

We found that the HeroWear reduced peak shear JCFs at the L5/S1 joint by 17.4% (p < 
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0.03). The active knee exoskeleton reduced peak normal and total JCFs in the knee by 

12.1% (p < 0.018) and 11.2% (p = 0.03). The exoskeletons also reduced JCFs in the non-

targeted joint of assistance: the HeroWear reduced total JCFs in the knee by 6.1%, and the 

knee exoskeleton lowered L5/S1 shear JCFs by 6.6%. Thus, suggesting the utility of the 

HeroWear and knee exoskeleton at directly and indirectly relieving tissue overexertion in 

the lower-back and knee and reducing the risk of injury in manual lifting. 

 

3.2 Introduction 

 The prevalence of musculoskeletal disorders continues to persist in the workplace, 

imposing both physical and financial burdens on laborers11,12. The repetitious bending, 

twisting, and lifting5–8 inherent in manual labor professions, such as loaded carriage by 

patient transporters4, leave workers susceptible to excessive joint and tissue loading50 and 

overall overexertion - the leading cause of musculoskeletal disorders3 such as low back 

pain or knee osteoarthritis. Biomechanical analyses have shown how various factors such 

as lifted mass51–53, lowering versus ascending58,59, and lifting symmetry28,52,53,56,58,60 

influence movement (kinematics) and external contributions of joint loading to provide 

insight on musculoskeletal injuries. However, characterizing the internal forces 

articulating across bone-on-bone junctions offers a more direct reference point for 

musculoskeletal injury risk assessment. Joint contact forces (JCFs), the bone-to-bone 

forces required to support forces elicited from muscles, ligaments, tendons, and external 

loads25. Technological advancements in computational tools19,20,22,65 allow us to estimate 

muscle forces and JCFs without utilizing invasive practices21–24,64,105,106. There exists a 

need for promising intervention technology to reduce the effects of hazardous external 
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loads on JCFs, and consequently the occurrence of musculoskeletal disorders, in manual 

labor tasks.  

 Wearable robotic devices are a promising solution to offload the harmful effects of 

external loading on internal limb-joint forces during manual labor. More specifically, the 

use of exoskeletons has lowered whole-body energy expenditure (metabolics)31,33,107,108, 

muscle activations35,108, and joint moments32,108 during walking and manual labor tasks. 

Since muscle forces more often the dominant contributor to JCFs67, the ability of 

exoskeletons to reduce muscle activations and forces108–110 is promising to also offload 

JCFs110–112. Exoskeletons, however, can be developed to be very task dependent, limiting 

their applications and overall usability. Multi-joint assistive devices could be the 

solution111,113 as they can simultaneously directly assist more areas, but also strategic 

design of single-joint devices could have residual benefits to neighboring joints and 

tissues111. Additionally, as more exoskeleton designs and studies are focusing on 

improving muscle fatigue110,114, task performance114, and comfortability114,115 – work 

conditions often plagued by overexertion and poor device design – they prove to be a more 

viable intervention strategy for mitigating workplace injuries. 

 The intent of this research is to advance analytical practices on internal limb-joint 

forces and assess the influence of exoskeleton assistance on lower-back and knee three-

dimensional JCFs during manual lifting tasks. There is a limited understanding on whether 

positive effects observed from exoskeletons usage may be harmful or beneficial to the loads 

experienced within the joint capsule, and consequently, how this may affect injury risks. 

To address this, wearable devices need to be properly characterized to better represent their 

assistance’s contributions to JCFs. To emulate a controlled experience of manual laborers, 

we designed an experimental protocol consisting of manual lifting tasks varying in 
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symmetry and lifting/lowering, each performed with exoskeletons donned (passive lower-

back device, active knee device) and doffed (no device). By leveraging musculoskeletal 

modeling and optimization tools65,105 which utilized motion capture, electrography, force 

plates (external forces), and torque/force outputs from the exoskeletons as inputs, we 

evaluated the effects of exoskeletons on knee and lower-back (L5/S1) JCFs. Previous 

research has shown that lower-back exoskeletons reduce compressive loading in the lumbar 

spine109,112; therefore, we hypothesized that the passive lower-back exoskeleton would 

reduce JCFs in the low back (L5/S1 joint) during industry-relevant lifting and the active 

knee exoskeleton (KE) would lower JCFs in the knee (H1). Furthermore, we also 

hypothesized that the either devices’ assistance will lower the JCFs of the non-targeted 

joint, meaning the KE will reduce L5/S1 JCFs and the HW will decrease knee JCFs during 

manual lifting (H2). The results will shed light on the inherent advantages or disadvantages 

of assistive devices for manual lifting tasks and inform future designs and implementations 

of industry-directed wearable devices to target offloading critical joint loads during manual 

labor.  

3.3 Methods 

3.3.1 Participants 

 Ten healthy participants (Table 4) enrolled in this study, who did not exhibit or 

have a history of any debilitating neurological, musculoskeletal, or cardiovascular 

conditions which prevent the successful completion of manual labor tasks. The Georgia 

Institute of Technology Institutional Review Board approved of this research study, and 

we obtained signed consent from all participants prior to data collection. 
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Table 4 – Exo assistance study participant demographics. Standard deviation = SD. 

Participant Gender Age (years) Height (cm) Weight (kg)  
1 M 25 169.3 79.55 
2 M 22 174.1 78.15 
3 F 26 177.75 90.95 
4 M 25 173 78.05 
5 M 24 171.85 70.75 
6 M 22 177.8 62.95 
7 M 24 164.6 61.05 
8 F 30 159.6 62.15 
9 M 21 169.85 70.35 

10 M 19 173.8 52.5 

Mean ± SD 8M / 2F 23.8 ± 2.9 171.2 ± 5.4 70.6 ± 10.7 

3.3.2 Experimental Design 

3.3.2.1 Experimental lifting tasks 

 Participants completed 12 lifting configurations of lift start-end heights, degrees of 

twisting, and exoskeleton usage. Lifts were initiated from knee height (knee-to-waist 

(KW)) or waist height (waist-to-knee (WK)), while degrees of twisting included 0° 

(symmetric), or facing forward, and 90° (asymmetric) turns (Figure 12A). Asymmetric lifts 

began on either the right or left side with 90° rotations towards neutral (facing forward). 

The order of exoskeletons usage was randomized, as well as the order of performed tasks 

within each exoskeleton condition. All lifts were performed at the participants’ preferred 

lifting speed while holding a 25 lb. (11.34 kg) dumbbell at their preferred lifting speed to 

fixed shelf positions at knee (17.8 cm (7 in)) and waist (72.4 cm (28.5 in)) height. 
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Figure 12 - (A) Visualization of asymmetric -- 90° (left) and symmetric -- 0° (right) 
lifting conditions with starting and target shelf height configurations between the 
knee and waist. Duplicates of asymmetric lifting were performed by starting from 
both sides of the body to capture clockwise rotations (left initial side) and 
counterclockwise rotation (right initial side). Shelves were offset 45° from 
participants’ neutral stance to perform 90° lifts. The dark maroon arrows represent 
knee-to-waist (KW) lifts and pink arrows represent waist-to-knee (WK) lifts. (B) 
EMG sensor placements of muscles whose activity has influence on this study’s 
targeted joints: the knee and lower back (L5/S1).  Sensors were placed anteriorly 
and posteriorly on the torso and right leg. Also shown are the exoskeleton devices 
utilized: active knee (left) and HeroWear (right). (C) Representation of device 
assistance modeled as force vectors acting along the body in sagittal plane. The force 
vectors were modeled as bilateral vectors, so that there was a total of six from the 
active knee exo and six from the passive back exo.  

3.3.2.2 Data collection 

 We instrumented participants with full-body reflective marker sets to track body 

segment orientations (Vicon, Oxford, UK, 100Hz) and recorded muscle activity from 

fourteen surface electromyography (EMG) sensors (Delsys, Natick, Massachusetts, USA, 

2000 Hz). EMG sensor placements, informed by SENIAM76, included the right leg (rectus 
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femoris, vastus medialis, vastus lateralis, bicep femoris, semitendinosus, tibialis anterior, 

and lateral gastrocnemius) and the trunk, bilaterally (erector spinae, latissimus dorsi, 

external obliques, and right-only rectus abdominis). (Figure 12B). We obtained ground 

reaction forces under both feet and forces from the dumbbell on the shelves (Bertec, 

Columbus, OH, USA, 2000 Hz).  

3.3.3 Data analysis 

3.3.3.1 Data processing 

 Raw EMG signals were processed using a bandpass filter (20-400 Hz, 2nd order 

Butterworth), full-wave rectification, a low-pass filter (6 Hz, 5th-order Butterworth), and a 

final half-wave rectification to ensure positive muscle activations. We performed a sweep 

across all tasks to find which lifting condition caused the most of the muscles recorded to 

experience peak activations (90°  knee-to-waist) and averaged across 5 maximum values 

for each muscle to serve as our maximum voluntary contraction value. We then normalized 

EMG signals to these averaged peak activation values. We used the rate of change of 

ground reaction force with a threshold value of 0.10 N/s to detect the start-end position of 

the dumbbell and define the initiation-termination time of each lift.  

3.3.3.2 Musculoskeletal analysis 

 We recruited two musculoskeletal models equipped to account for the involvement 

of arms to simulate the experimental lifting motions totally using OpenSim v4.0 (SimTK, 

Stanford, CA, USA). The Full Body Running model includes 92 musculotendon actuators 

distributed within the trunk and lower extremities, providing a high resolution of muscles 

about the knee joint. The Lifting Full Body model includes 238 musculotendon actuators 
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distributed within the trunk, providing a high resolution of muscles spanning the back and 

spine. To better track the participants’ motion, we modified the ranges of motion 

constraints for joints in the arms, torso, pelvis, and legs. To account for the dumbbell’s 

inertial contributions, we havened its mass and applied it to each hand using OpenSim 

WeldJoint.  

 To compute joint angles, moments, and contact forces, we followed the 

computational methodology outlined by Davenport et al.105 with the exception the 

execution of Inverse Dynamics. We expressed the exoskeleton assistance as external forces 

prior to running the Inverse Dynamics Tool. Refer below to section 3.3.3.5 for details on 

this process. 

 We computed all data and extracted features highlighted in the results using custom 

MATLAB scripts. We split JCFs into normal, shear, and total components. Shear JCFs are 

the Euclidean norm of the anterior-posterior and mediolateral shear forces. Total JCFs are 

the Euclidean norm of the normal and shear forces. JCFs are normalized to the product of 

mass and acceleration of gravity (times body weight). To condense our dataset for analysis 

and visualization, we compared joint moments and contact forces for 90° asymmetrical 

lifting by averaging across the clockwise and counterclockwise-directed performance of 

the same task (e.g., 90° waist-to-knee, starting right versus starting left). Thus, permitting 

our analyses to report representative outcomes for variations in natural lifting techniques.  

3.3.3.3 Injury risk assessment 

Similar to Chapter 2, we leveraged joint loading tolerance values found in literature 

to assess the effectiveness of the exos in reducing injury risk in the lower back and knee. 

In the lower back, the compressive force of 3400 N79,80 and the shear force of 1000 N79,82–
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84, which have shown relevance to increased risk of developing low back pain79, were used 

as L5/S1 JCF tolerance criterion. In the knees, the compressive force of 8500 N87 and the 

shear force of 2400 N88 were used as knee JCF tolerance criterion. To assess the exos’ 

affect on injury risk in cumulative loading, we integrated these tolerance criteria values 

over a full lift cycle. In order to relate these values to JCFs in our data, we normalized the 

injury risk threshold peak and integrated forces by the average participant weight in (70 kg 

multiplied by 9.81 m/s2). The resulting values used for injury risk assessment are found in 

Table 2.   

3.3.3.4 Statistical analysis 

 We performed one-way repeated measures ANOVA to test for the significance of 

using no exo, an active knee exo, and a passive back exo on normal, shear, and total JCFs 

at the knee and L5/S1 joint (H1-H2). To do this, we utilized a Mixed Effects Model with 

participants as random factors, exo conditions as fixed factors, and the continuous response 

variables were the desired JCF component. A post hoc Bonferroni pairwise multivariate 

comparison test evaluated the statistical significance between the resulting knee and back 

JCFs averaged across all lifting conditions from exo usage with the threshold for 

significance set at α = 0.05 (Minitab - Penn State University, State College, PA).  

3.3.3.5 Exoskeleton selection 

 Previous findings by Davenport et al.105 highlight the need for intervention 

strategies at the knee and lower back to reduce JCFs and resulting injuries; thus, informing 
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our selection of knee and back exoskeletons. The knee exoskeleton (KE) was locally 

constructed in Georgia Institute of Technology’s Exoskeleton and Prosthetic Intelligent 

Controls Lab90,116. This device was rigidly anchored to the user’s shoe, with Velcro straps 

fastening the thigh and shank interfaces to their respective segments (Figure 12C), with the 

motor aligned in parallel with the knee joints, providing an extension torque that dampened 

the lowering phase of a lift and a spring-like assist during the ascending phase of a lift. The 

KE weighed 4.8 kg and actively provided bilateral assistance up to 17 N-m torque, and 9 

N-m continuously. Complete details on its impedance controller design are outlined in 

work by Nuesslein et al.90 We chose the HeroWear Apex exosuit (HeroWear Apex, 

HeroWear, USA) as our back exoskeleton. The HeroWear (HW) device is a commercially 

available comprised of soft, breathable trunk and thigh interfaces linked by two elastic 

bands and weights 1.9 kg. When the HW is engaged, the elastic bands stretch about the 

users’ backside during trunk flexion to provide assistance passively. We instrumented a 

uniaxial load cell (2000 Hz) in series to the elastic bands to record the summed band force 

synchronously with motion data.  

3.3.3.6 Modeling of exoskeletons  

 Standard procedure in biomechanics analyses with exoskeletons is to subtract the 

device’s torque contribution from the total moment calculated from inverse dynamics to 

get biological joint moments. JCFs are sensitive to the moment arms that forces are applied 

with respect to the joint; hence why large muscle forces close to the joints dominate the 

intersegmental forces which arise from external loading25,67. For these reasons, we 

exercised caution in the modeling of assistance from the KE and HW as external point 

forces in OpenSim.  
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 For the KE, we modeled the assistive torque as six posterior force vectors in the 

thigh, shank, and foot, bilaterally (Figure 12C). We utilized the measured torque (200 Hz) 

output variable measured by the actuators to capture the true assistance each user 

experienced during the lifting tasks due to user resistance (Figure 13B). The measured 

torque was processed with a bandpass filter (5-20 Hz, 4th-order Butterworth). We used 

positions of reflective markers on the thigh, shank, foot, and bony landmarks to compute 

moment arms about the knee joint and construct a plane for each segment about which we 

oriented each force vector using linear algebra. We made the assumption that the torque is 

applied purely to the thigh segments (Equation 3), but there is a coupled dynamic between 

the shank and foot due to the device’s foot/ankle attachment point producing residual 

torques. Next, we generated systems of equations for the sum of forces, ∑F(x, y, z) 

(Equation 2), and torques,∑𝜏(x, y, z) (Equation 1), about the thigh, shank, and foot, with 

the thigh force and torque terms being known (Equation 4). We constrained these equations 

to remain balanced to match the kinematics performed. Using Gaussian elimination, we 

solved the unknown thigh and foot/ankle forces and torques in each linear equation. 

Assuming a uniform distribution of force on each segment’s exoskeleton interface, we 

calculated the average position of the thigh, shank, and foot markers to define the location 

of the point force.  

∑𝜏 = 𝜏!"# +	𝜏$##% + 𝜏&'()* = 𝑟 × 𝐹⃑ (1) 

∑𝐹⃑ = 𝐹⃑%'+,' +	𝐹⃑$##% + 𝐹⃑&'()* = 𝑚𝑎⃑ (2) 

𝜏!"# = 𝜏%'+,' =
𝑟%'+,'
,𝑟%'+,',

× 𝐹⃑%'+,' (3) 
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𝜏%'+,' +	 𝑟⃑$##% ×	(𝐹⃑%'+,' +	𝐹⃑&'()*) +	𝑟&'()* × 𝐹⃑&'()* = 	0 (4) 

Lastly, due to the KE providing an extension torque, we determined the direction of the 

thigh and shank force vectors to point anteriorly but were subject to fluctuation due to the 

computed values from the measured torque. The force vector at the foot/ankle was defined 

as a residual force to balance the exo’s contribution and was determined to face posteriorly 

but was subject to change due to the measured torque values. 

 For the HW, we modeled the assistive torque as six posterior force vectors on the 

trunk, pelvis, and thigh, bilaterally (Figure 12C). The single load cell was aligned in series 

with the elastic bands, requiring the divvying of forces per band. Through tension testing, 

we found the linear with stiffness of each band to be 1.67 N/mm. We used the positions of 

reflective markers placed along the elastic bands, as well as the origin and insertion of the 

bands on the HW’s trunk and thigh interfaces, respectively, which showed the individual 

displacement of the bands. With an optimization algorithm using the filtered load cell data 

as the resultant force between both bands as the target and each band’s slack length as 

variables, we resolved for their individual force contributions (Figure 14B). Assuming 

uniform tension in concentrated areas of the band, we applied the vectors as point forces 

pulling away from the trunk and thighs and pushing towards the pelvis.  

 For both devices, we appended each point force’s three-dimensional components 

of force, position, and torque to the external loads file containing ground reaction forces 

prior to running the Inverse Dynamics Tool.  
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3.4 Results 

3.4.1 Knee exo 

Participants were able to maintain similar lifting postures and sagittal plane knee 

kinematics across symmetric and asymmetric conditions while using the KE compared to 

NoE (Figure 13A). Noticeable differences in knee angle patterns between exo usage 

conditions arise during periods of greater knee flexion (i.e., first 50% of KW lifts, last 50% 

of WK lifts). On average, commanded and/or measured torque output higher magnitudes 

of assistance from the KE during greater knee flexion (Figure 13B). However, the 

magnitude of assistive torque provided to each user (measured) was much lesser than that 

of what was commanded – hereby alluding to user resistance to the device. Consequently, 

the biological knee moments computed after incorporating the measured KE assistive 

torques as external point forces show an increase across all tasks with respect to the NoE 

condition (Figure 13C). Peak and integrated JCFs were increased with the use of the KE 

(Figure 21). Interestingly, the total (exo + biological) knee moments show that when the 

users were assisted with a torque closer to the commanded torque value, the net external 

moments using the KE are reduced from the NoE moments (Figure 13D). Otherwise, the 

KE did not provide an assistive torque which could offload the biological moment 

contribution.  

 The KE did substantially alter L5/S1 flexion/extension angles from the NoE joint 

angles during the lifting conditions (Figure 14A).  On average, the KE caused users to 

extend their lower back more (Figure 14A) across tasks, decreased L5/S1 lateral bending 
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(Figure 22B) across tasks, and decreased L5/S1 axial rotation (Figure 22C) during 

symmetric lifting tasks. The KE had minimal effect on biological flexion moments at the 

L5/S1 joint (Figure 14C), but reduced lateral bending (Figure 23B) and axial rotation 

moments (Figure 23C).  

 Figure 13 - The across-participant averaged time series of knee kinematics of 
knee flexion (A), commanded and measured torque from the active knee 
exoskeleton (KE) (B), biological knee flexion moments (C), and total knee 
flexion moments (D) during symmetric and asymmetric knee-to-waist (KW) 
and waist-to-knee (WK) lifting conditions. Conditions of exoskeleton usage 
are illustrated as no exoskeleton (NoE – black), passive HeroWear 
exoskeleton (HW – blue), and active knee exoskeleton (KE – red). Standard 
error of the mean is represented by haze surrounding about the average.  
Kinematics are reported from the right starting side of asymmetric 
conditions. The right and left starting sides asymmetric (90°) lifting 
conditions were averaged for knee flexion moments. Positive knee angles 
indicate knee extension, and positive moments represent flexion moments. 
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Muscle activations are an important factor contributing to muscle forces and 

consequently JCFs; therefore, it is crucial to understand how muscles may function 

differently with exoskeleton usage and how these resolve into JCFs. Wearing the KE 

during lifting led to reductions in EMG of rectus femoris (RA), lateral gastrocnemius (LG), 

vastus medialis (VM), semitendinosus (ST), and biceps femoris (BF) during symmetric 

(0°) and asymmetric (90°) lifting (Figure 18B). The KE greatly reduced rectus abdominis 

(RA) activations across tasks and minimally changed other back and torso-related muscles 

Figure 14 - The across-participant averaged time series of L5/S1 flexion (A), 
force output (N) of uniaxial load cell and individual elastic band contributions 
from HeroWear (HW) passive exoskeleton (B), biological L5/S1 flexion 
moments (C), and total L5/S1 flexion moments (D) during symmetric and 
asymmetric knee-to-waist (KW) and waist-to-knee (WK) lifting conditions. 
Conditions of exoskeleton usage are illustrated as no exoskeleton (NoE – gray), 
passive HeroWear exoskeleton (HW – blue), and active knee exoskeleton (KE – 
purple). Standard error of the mean is represented by haze surrounding about 
the average. Asymmetric lifting conditions using the right starting side were 
represented in the 90°-KW and -WK kinematic outputs. The right and left 
starting sides asymmetric (90°) lifting conditions were averaged for L5/S1 
moments. Positive L5/S1 angles represented back extension.  
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such as the external obliques (EO), erector spinae (ES), and latissimus dorsi (LD) (Figure 

18A). 

 Workers performing manual lifting are often tasked to lift heavy objects and 

materials unexpectedly. To measure this, we sought to examine peak JCFs. In exploring 

the effects of active exoskeletons on JCFs, we found that the KE reduced total JCFs across 

all lifting conditions (Figure 15B) in the knee joint. The KE caused reductions of 12.1% (p 

= 0.018) in normal and 11.2% (p = 0.03) total peak JCFs in the knee compared to NoE 

(Figure 16A). It is also important to consider how exoskeletons could modify JCFs when 

exposed to heavy loads over time. To measure this, we examined integrated JCFs. The KE 

significantly reduced normal (p = 0.023), shear (p = 0.038), and total (p = 0.019) integrated 

knee JCFs by 12.6%, 23.7%, and 13.3%, respectively (Figure 17A).  

 Interestingly, the KE incited higher JCFs at the L5/S1 joint during asymmetric KW 

and WK lifts (Figure 15A) throughout the task duration. The KE did not statistically affect 

peak JCFs in the L5/S1 joint (Figure 16B). The KE did not significantly reduce integrated 

L5/S1 joint JCFs but did lower L5/S1 shear JCFs by 5.8% (Figure 17B). 

 To readdress the relationship between lower back and knee joint loading introduced 

in sections 2.4 and 2.5.3 (Figure 8), we turn to the grouped percent changes in total back 

and knee peak JCFs while using the KE with respect to the NoE condition (Figure 19B). 

The KE was not successful in reducing both the L5/S1 and knee JCFs simultaneously when 

considering peak joint loading or cumulative (integrated) joint loading.  
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Figure 15 - The time series across-participant average for total JCFs at the L5/S1 
joint (A) and knee (B). Conditions of exoskeleton usage are illustrated as no 
exoskeleton (NoE – black), passive HeroWear exoskeleton (HW – blue), and active 
knee exoskeleton (KE – purple). Shown are symmetric (0°) and asymmetric (90°) 
lifts with knee-to-waist (KW) and waist-to-knee (WK) starting height 
configurations. The right and left starting sides asymmetric (90°) lifting conditions 
were averaged for JCFs. Standard error of the mean is represented by haze 
surrounding about the average. 

3.4.2 Back exo 

 Pivoting to assess the effects of passive exoskeletons on JCFs, the HeroWear device 

permits wearers to perform the instructed lifts with modified lifting mechanics to those 

without an exo (Figure 14A), with increasingly noticeable variations in L5/S1 joint angles 

during periods where the elastic bands are providing more assistance (Figure 14B). The 

increased L5/S1 extension shows that HW constrains participants to remain more upright 

when performing lifting and lowering tasks. The HW also causes reduced lateral bending 

(Figure 22B) and axial rotation (Figure 22C) joint angles across lifting conditions 

compared to the no exo condition. The flexion, lateral bending, and axial rotation moments 
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at the L5/S1 joint were reduced across all lifting tasks (Figure 14B. Figure 23), especially 

during periods within the lifting duration where the HW elastic band assistance was higher. 

More specifically, the HW reduced peak and integrated L5/S1 flexion and axial rotation 

moments, while increasing peak and integrated lateral bending moments (Figure 21).  

 The HW did cause the knee joint angles to maintain a more flexed posture 

compared to NoE across lifting tasks (Figure 13A).  When the knees are more flexed, the 

HW causes the biological and total knee moments to be higher across tasks; on the other 

hand, these moments show negligible differences from NoE across lifting conditions 

(Figure 13 C,D).  On average, the HW increased peak and integrated biological knee 

moments (Figure 21).  

 Wearing the HW during lifting led to reductions in muscle activations of torso 

muscles such as the erector spinae (ES), latissimus dorsi (LD), external obliques (EO), and 

rectus abdominis (RA) during symmetric (0°) and asymmetric (90°) lifting (Figure 

18A).The use of the HW led to increase in muscle activations in the rectus femoris (RF) 

and vastus medialis (VM), and reductions in the biceps femoris (BF) across all conditions 

(Figure 18B).  

 The lowering of L5/S1 joint moments and activations of neighboring muscles 

funneled into the result that the HW reduced L5/S1 JCFs (Figure 15A). Modeling 

unexpectedly peak loads manual labor employees could be exposed to, we found that the 

HW lowered peak shear JCFs at the L5/S1 joint by 17.4% (p < 0.027). To address exposure 

to prolonged loading, integrated L5/S1 JCFs also showed reductions in shear forces by 

21.1% (p < 0.003). The HW also caused normal and total knee JCFs to be 7.0% and 6.1% 

less than without an exo. The HW decreased integrated normal and total JCFs in the knee 

by 9.1% and 7.8%. 
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It is apparent that the HW benefits the loading relationship between lower back and 

knee joint (sections 2.4 and 2.5.3 (Figure 8)). Percent changes in JCFs in the total back and 

knee peak JCFs while using the HW device with respect to the NoE condition (Figure 19A) 

show mutual reductions in loading. Similarly, the HW proved to decrease total back and 

knee integrated JCFs. Therefore, the HW was ultimately successful in reducing both the 

L5/S1 and knee JCFs simultaneously, although not with significance, when considering 

peak loading and cumulative (integrated) loading.   

 

 

Figure 16 – Group-averaged peak normal, shear, and total JCFs in the knee (A) and 
L5/S1 (B) joint as explored in the hypotheses (H1 and H2). Conditions of 
exoskeleton usage are illustrated as no exoskeleton (NoE – gray), passive HeroWear 
exoskeleton (HW – blue), and active knee exoskeleton (KE – purple) bars for all 
force components. Each bar is the average JCF across the lifting and starting height 
configurations (KW and WK) and lifting degrees of turn (0°, 90°). Across-
participant averages of independent start-end height and degree of lift condition are 
identified by shape and color: 0° KW – maroon circle, 0° WK – pink circle, 90° KW 
– maroon triangle, 90° WK – pink triangle. Injury risk thresholds for the L5/S1 
joint (estimated from 79,80,83,84,88) and knee joint (estimated from 86–88) are 
represented by orange and green dashed horizontal lines, respectively (see Table 2). 
Significantly different groups are denoted with an asterisk.  Statistical significance 
across all conditions concluded when α = 0.05. 
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3.5 Discussion 

In this study, we sought to evaluate how assistance from an active knee and passive 

back exoskeleton device influenced three-dimensional JCFs inside limb-joints during 

manual lifting tasks. More precisely, we designed an experiment to challenge the 

effectiveness of wearable devices at mitigating the higher L5/S1 and knee JCFs found in 

symmetric (0°) and asymmetric (90°) below-the-waist lifting conditions identified in 

Section 2.5.3 (Figure 8)105. We performed analyses which accounted for the motorized and 

elastic support from each device to assess how the assistance influences short-term and 

prolonged exposures to joint loading.  We hypothesized that the passive lower-back 

exoskeleton (HW) would reduce JCFs in the low back (L5/S1 joint) and the active knee 

exoskeleton (KE) would decrease knee JCFs during industry-relevant lifting (H1). 

Additionally, we were interested in how each device would influence loading of the 

unprescribed joint. Therefore, we hypothesized that the HW would lower knee JCFs and 

the KE would reduce JCFs at the L5/S1 joint during manual lifting (H2). We accepted H1 

as our data show that HW was successful at decreasing peak and integrated shear L5/S1 

JCFs (Figures 16B, 17B) and the KE lowered peak and integrated normal and total JCFs 

(Figures 16A, 17A). On the other hand, our data demonstrates that neither device could 

significantly reduce the JCFs of an unprescribed joint, therefore we reject H2.   
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Figure 17 – Group-averaged integrated normal, shear, and total JCFs in the knee 
(A) and L5/S1 (B) joint as explored in the hypotheses (H1 and H2). Conditions of 
exoskeleton usage are illustrated as no exoskeleton (NoE – gray), passive HeroWear 
exoskeleton (HW – blue), and active knee exoskeleton (KE – purple) bars for all 
force components. Each bar is the average JCF across the lifting and starting height 
configurations (KW and WK) and lifting degrees of turn (0°, 90°). Across-
participant averages of independent start-end height and degree of lift condition are 
identified by shape and color: 0° KW – red circle, 0° WK – pink circle, 90° KW – 
red triangle, 90° WK – pink triangle. Injury risk thresholds for the L5/S1 joint 
(estimated from 79,80,83,84,88) and knee joint (estimated from 86–88) are represented by 
orange and green dashed horizontal lines, respectively (see Table 2). Significantly 
different groups are denoted with an asterisk.  Statistical significance across all 
conditions concluded when α = 0.05. 

 

3.5.1 Knee exo 

We anticipated that the KE would reduce knee JCFs across all tasks (H1). The 

method we used to apply the assistive motor torques as force vectors acting on the thigh, 

shank, and foot segments contributed mostly shear forces about the knee joint (Figure 12C). 

We believed that the resolution of these shear forces would not cause harm to the joint but 

lead to the reduction in compression and total knee JCFs, similar to the effect exemplified 

in the relationship between knee torque, biological knee moments, and the resulting total 
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knee moment (Figure 13B-D). We found this demonstrated across all tasks on average 

(Figures 16A, 17A). The KE was successful at reducing peak and integrated total knee 

JCFs in symmetric, knee-to-waist (KW) lifting (Figures 19B, 20B) – the condition 

identified as the “hot spot” for joint loading in Chapter 2 (Figure 8) – but also in all other 

conditions.  

Arriving to the result that the KE reduces knee JCFs (H1) sheds light on interesting 

takeaways in some of the factors responsible. Hondzinski et al. (2018)117 showed that an 

active lower-body exo that spanned the hip and knee joints did not alter knee kinematics in 

order to be effective as an assistive or augmentative tool117. Our data showed a similar 

trend in minor deviations of knee kinematics (i.e., less flexed during lifts) with the use of 

an active KE (Figure 13A) with respect to without one (NoE). Net external joint forces 

(moments) also are a commonly utilized metric in assessing general trends in joint loading, 

especially in observing the effectiveness of wearable technology111. A literature search by 

Koch and Font-Llagunes (2021)118 showed that lower-limb exosuits have the capability of 

reducing knee adduction moments17,118.  In response to the measured KE torque (Figure 

13B), the biological knee moments increased compared to NoE knee moments (Figure 

13C) which was an unintuitive result. We know that the total joint moment is the sum of 

the exo torque and the biological joint moment, which remains the case in this context. 

However, we believe the difference is derived from the knee biologically providing a 

flexion moment, whereas the KE is providing an extension torque, leading to some 

cancellation shown in the total knee moments (Figure 13). Through traditional practices of 

subtracting exo torques from total joint moments, we would only demonstrate the sum of 
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two positive, non-negating components. Thus, further supporting the need for more 

rigorous implementation and modeling of exo assistance. The KE also reduced muscle 

activations in knee flexors and extensors (Figure 18) across lifting tasks which indirectly 

led to reductions in muscle forces. The complex combination of all these features led to the 

reduction of JCFs in the knee joint, ultimately highlighting that joint moments do not 

always tell the whole story of injurious joint loading.   

We also expected that the KE would reduce lower spine (L5/S1) JCFs (H2). This 

hypothesis was rejected as the KE led to no significant changes in either peak nor integrated 

JCFs at the L5/S1 joint (Figures 16B,17B). Although not statistically significant, relative 

to the other tasks, the KE does reduce peak and integrated L5/S1 JCFs in symmetric KW 

lifts. We believe these reductions in JCFs may have stemmed from posture modifications 

in the lower back (less flexed) during these lifts while wearing the KE (Figure 14A). The 

use of the KE did not strongly influence biological and total L5/S1 moments, with the 

exception of increasing peak and integrated moments (Figure 21). Additionally, muscle 

activations of back/torso muscles were largely unaffected, except for rectus abdominis 

experiencing reductions in activations (Figure 18) across conditions. Hondzinksi et al. 

(2018) warned of the hazardous consequences when knee kinematics are largely unchanged 

such as higher resulting internal and external loading on the spine, affecting tissues and 

normal and compressive JCFs117.  It is possible that the L5/S1 joint angles resulting from 

using the KE increased risk of injury in the lower back.  
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 In totality we would recommend the KE to target JCF loading at the knee for 

mitigating peak and cumulative (integrated) loading. On average, the KE does not harm 

peak joint loading at the L5/S1 joint, but over time, it does cause increases in integrated 

total L5/S1 JCFs.  Additionally, our data also support that normal, shear, and total JCFs at 

the knee joint are below the literature-supported tolerance thresholds86–88 (Figure 5, Table 

2) without the KE, and are further reduced with the KE (Figures 16A, Figures 17A), but 

this is not true at the  L5/S1 joint (Figures 16B, Figures 17B). This suggests that KE is an 

effective tool for mitigating hazardous joint loads when targeting a single joint (the knee) 

or for acute use if seeking to offload multiple joints during manual lifting.   

 

3.5.2 Back exo 

We anticipated that the HW would reduce lower spine (L5/S1) joint loading (H1). 

The method we used to apply the assistive loads as force vectors from the elastic bands 

acting on the posterior side of the torso, pelvis, and thigh segments contributed mostly 

compressive forces about the L5/S1 joint (Figure 12C). We believed that this would 

contribute to an increase in joint compression forces – not to cause detriment to the joint—

but would overall lead to the reduction in shear and total knee JCFs. We accept this 

hypothesis as we did see reductions in shear peak and integrated L5/S1 JCFs as a result of 

HW usage, simply not enough to reduce the total JCF.  

We believe that changes in kinematics, kinetics, and muscle activations led to the 

result that the HW reduced shear JCFs in the L5/S1 joint (H1). Goršič et al. (2021)119 
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performed a study using the HW and showed its ability to reduce the range of motion of 

flexion and extension of the back119, which supports our data (Figure 14A), but we also 

saw this results in lateral bending and axial rotation (Figure 22). Passive back exos have 

also been shown to reduce L5/S1 joint moments120, which our data shows throughout each 

lift (Figures 14C, 21). Use of passive back exos, like the HW, provide a considerable 

amount of support in their ability to reduce muscle activations119,121,122. In our experiment, 

the HW was also effective at offloading muscle-level effort in torso/back flexors and 

extensors in the lifting tasks performed in our study (Figure 18). The reductions in 

lumbosacral range of motion, biological joint moments, and surrounding muscle 

activations from wearing the HW all led to significantly less JCFs in L5/S1 joint than 

without the use of the HW (NoE) (Figures 15-17). 

We also expected that the HW would reduce knee JCFs (H2). Studies have shown 

that the use of a back exoskeleton altered knee kinematics (hyper-extension)112 and 

reductions in knee flexor muscle activity123. Thus, inspiring the expectation that 

exoskeletons may indirectly affect joint contact forces of the unassisted joint. However, we 

reject this hypothesis as we did not find any statistically significant changes in knee JCFs 

with the use of the HW. However, we did find promising reductions in peak and cumulative 

normal and shear JCFs in the knee (Figures 13,14). Conversely, the HW did cause some 

increase in peak and integrated knee moments (Figure 21), potentially due to the tension 

force from the elastic bands pulling on the exosuit’s thigh cuffs.  Wearing the HW also 

caused users to flex their knees more than without an exo (NoE) across all lifts (Figure 

14A), potentially due to participants being more comfortable in this flexed-knee posture 
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given the exo’s assistance. The extension moment produced by the HW’s elastic band 

assistance122 led to offloading in knee extensor muscle activations but increases in knee 

flexor muscles (Figure 18). Potentially, if the HW were able to provide an assistance which 

decreases peak and integrated knee moments and knee flexor muscle activity, the 

reductions in knee JCFs could be significant to redefine its utility to a multi-joint exosuit.  

All in all, we would recommend the HW to target JCF loading at the lower back 

for peak and cumulative loading mitigation. Considering the HW does not harm either joint 

with its usage in either joint loading context, we would also support its use to anecdotally 

reduce JCFs in the knees as well. Additionally, our data show that normal, shear, and total 

JCFs at the L5/S1 joint exceeded the literature-supported tolerance thresholds79–83 (Figure 

5, Table 2) in peak and cumulative loading with and without the use of the HW (Figures 

16B, 17B). The HW slightly reduces knee JCFs to be further away from reaching the joint 

loading capacity (Figures 16A, 17A). These results shed light on the HW’s potential utility 

to offload neighboring joints during manual labor tasks, but also introduces that more 

assistance is needed to reduce L5/S1 JCFs below the injury risk threshold. 

3.5.3 Limitations 

 There are a few limitations to this study worth mentioning which could have 

implications on the aforementioned outcomes. Participants were allowed to perform each 

lift with natural mechanics, but we controlled the weight being lifted (11.34 kg), lifting 

conditions (starting-ending positions and degree of turn), and foot placement. Variation in 

their lifting rate or foot stance, may have contributed to variance in our results. We 
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leveraged the neuromusculoskeletal solved CEINMS to simulate deep muscles and those 

we could not experimentally collect. Knee JCF results were focused on the right, EMG-

instrumented leg, but we expect similar forces on the left knee. Additionally, the lack of 

female representation in this study restricted us from investigating the effects of gender on 

JCFs. 

Another limitation could be from how users were fit to the exos. The knee exo is a 

rigid device designed to be fastened to thigh and shank segments with Velcro and an 

additional interface was adhered to the lateral side of their shoes near the ankle with screws. 

The motors were intended to be aligned in parallel with the knee joint centers; however, 

misalignment from human error is possible. Misalignment could be represented in the 

results in various ways, especially at the level of controller output. While the knee exo’s 

controller was designed to provide an extension torque about the knee, this felt like a 

damping torque on the lift descent (squat) and a spring torque on lift ascent. Controller 

validation pilots showed that the torque response predominantly scaled with the speed of 

the lift instead of the steepness of squat. The stiffness-damping parameter combination (k 

= 4.6 Nm/rad, b = 2.8 Nm/rad/s) was selected because it showed the least muscle activation 

across each pilot participant (Nuesslein et al., 2024). Prior to experimentation, this 

provided confidence that the exoskeleton assistance should be helpful for many 

participants. However, when comparing the commanded torque and measured torque from 

the knee device, we saw large discrepancies indicating resistivity to the device from users. 

We believe this stemmed from the minor misalignment or even lack of device adaptation, 

despite scheduling participants to train in each device on a separate day prior to 
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biomechanics data collections. The back exoskeleton (HeroWear) has an online sizing 

calculator which accepts sex, chest and thigh circumference, and the diagonal length of the 

back to best fit the vest, thigh cuffs, and elastic bands to each individual user. The 

participants were also trained in a separate session prior to collecting biomechanics data to 

increase habituation and effectiveness of exoskeletons124. These employed methods of 

tailoring to each user can ensure a robust, personalized assistance which can prove more 

beneficial to joint loading than a singular standard setting for all users. However, when 

presetting the posture at which the elastic bands should begin assisting with the clutch, 

there is slight room for human error.  

Another limitation could be the devices selected for this study. There are many 

commercial exoskeletons to utilize for the proposed project which have useful applications 

for the studied manual lifting tasks32,125. The knee exoskeleton was developed in our lab 

for previous studies116,126,127, and showed promising reductions in joint contact forces126. 

This reason combined with its accessibility motivated its use in these protocols. The 

HeroWear was a cost-effective119, commercial device that was available to acquire for 

testing. However, it is possible that users would have performed these tasks with lower 

JCFs in the lower back and knees with devices capable of providing more assistance. 

Further testing on stronger devices would be needed to address this.  

Lastly, similar to Chapter 2 findings, the use of discrete tolerance thresholds to 

quantify injury risk from the JCFs elicited in each lifting task does not take into account 

important aspects (i.e., vertical distance traveled by carried weighted object) that largely 
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affect the joint loading risks104. We would suggest implementing a more in-depth injury 

risk equation81,103 or assessment tool to compare its ability to identify hazardous JCFs in 

manual lifting.   

3.6 Conclusion 

 This study investigated how exoskeleton assistance affects JCFs in the knee and 

lower-back (L5/S1) during a symmetric and asymmetric manual lifting tasks. We found 

highest JCFs in symmetric (i.e., load straight in front of the body), below the waist lifting 

tasks.  Taken together, our results suggest that asymmetric lifting can actually reduce JCFs 

in the lower back and knee when compared to moving loads straight in front of the body. 

Interventions to reduce JCFs during heavy lifting should emphasize transporting weight 

above the waist or close to the body, while encouraging postures that minimize trunk and 

knee flexion (i.e., small external moment arms). Therefore, asymmetrical twisting and 

lifting may not be as hazardous to joint loading. Lastly, we found that JCFs were 

proportionally distributed across knee and lower back joints, suggesting that preferred 

lifting techniques might be selected to balance JCFs across joints and avoid local 

overloading – a motor control principle indicating a trade-off that might be leveraged by 

assistive technology applied at one joint (e.g., back) to protect another (e.g., knee). 

The intent of this research is to advance analytical practices on internal limb-joint forces 

and assess the influence of exoskeleton assistance on lower-back and knee three-

dimensional JCFs during manual lifting tasks. There is a limited understanding on whether 

positive effects observed from exoskeletons usage may be harmful or beneficial to the loads 
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experienced within the joint capsule, and consequently, how this may affect injury risks. 

To address this, wearable devices need to be properly characterized to better represent their 

assistance’s contributions to JCFs. To emulate a controlled experience of manual laborers, 

we designed an experimental protocol consisting of manual lifting tasks varying in 

symmetry and lifting/lowering, each performed with exoskeletons donned (passive lower-

back device, active knee device) and doffed (no device). By leveraging musculoskeletal 

modeling and optimization tools65,105 which utilized motion capture, electrography, force 

plates (external forces), and torque/force outputs from the exoskeletons as inputs, we 

evaluated the effects of exoskeletons on knee and lower-back (L5/S1) JCFs. Previous 

research has shown that lower-back exoskeletons reduce compressive loading in the lumbar 

spine109,112; therefore, we hypothesized that the passive lower-back exoskeleton would 

reduce JCFs in the low back (L5/S1 joint) during industry-relevant lifting and the active 

knee exoskeleton (KE) would lower JCFs in the knee (H1). Furthermore, we also 

hypothesized that the either devices’ assistance will lower the JCFs of the non-targeted 

joint, meaning the KE will reduce L5/S1 JCFs and the HW will decrease knee JCFs during 

manual lifting (H2). The results will shed light on the inherent advantages or disadvantages 

of assistive devices for manual lifting tasks and inform future designs and implementations 

of industry-directed wearable devices to target offloading critical joint loads during manual 

labor.  

3.7 Conflict of Interest Statement 

 There is no conflict of interest reported by the authors. 

 

 



 
 

 

72 

3.8 Acknowledgements 

This work was supported by Sandia National Laboratories, a multi-mission 

laboratory managed and operated by the National Technology and Engineering Solutions 

of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. 

Department of Energy’s National Nuclear Security Administration under contract DE-

NA0003525. This paper describes objective technical results and analysis. Any subjective 

views or opinions that might be expressed in the paper do not necessarily represent the 

views of the U.S. Department of Energy or the United States Government. We would like 

to formally thank Jason Wheeler for his instrumental involvement in the development of 

this study. We would also like to show our appreciation to all the participants of this study. 

 

 

 

 

 

 

 

 



 
 

 

73 

3.9 Supplementary Figures for Chapter 3 

 

Figure 18 - The across-participant averaged time series of EMG from muscles in the 
torso and right leg. The muscles are as follows: erector spinae (ES) (A), latissimus 
dorsi (LD), external obliques (EO), right rectus abdominis (RA), rectus femoris 
(RF), lateral gastrocnemius (LG), vastus medialis (VM), biceps femoris (BF), 
semitendinosus (ST). Averaged muscle activity from muscles recorded with a right-
left pairing (see Figure 1B) are shown across the conditions. Conditions of 
exoskeleton usage are illustrated as no exoskeleton (NoE – black), passive HeroWear 
exoskeleton (HW – blue), and active knee exoskeleton (KE – red). Shown are 
symmetric (0°) and asymmetric (90°) lifts with knee-to-waist (KW) and waist-to-
knee (WK) starting height configurations. The right and left starting sides 
asymmetric (90°) lifting conditions were averaged for EMG.  Standard error of the 
mean is represented by haze surrounding about the average. 
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Figure 19 - Percent change of peak total L5/S1 and knee JCFs while donning the 
active knee device (KE) with respect to no exoskeleton use. The red zone of the 
quadrant signifies hazardous loading for both the knee and lower-back and is least 
preferable. Meanwhile, the bottom left green zone indicates the exoskeleton reduced 
internal joint loading for the lower-back and knee. The white quadrant regions 
illustrate that the exoskeleton only reduced joint loading on the knee or the lower-
back. Circles represent symmetric (0°) lifts, and triangles represent asymmetric lifts 
(90°). Dark, maroon-colored shapes represent knee-to-waist lifts, and pink-colored 
shapes represent waist-to-knee lifts. Larger shapes represent group averages and 
smaller shapes are participant-average datapoints. 
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Figure 20 - Percent change of integrated total L5/S1 and knee JCFs while donning 
the (A) HeroWear (HW) and (B) the active knee exo with respect to no exo use. The 
red zone of the quadrant signifies hazardous loading for both the knee and lower-
back and is least preferable. Meanwhile, the bottom left green zone indicates that 
the exoskeleton reduced JCFs for the lower-back and knee. The white quadrant 
regions illustrate that the exoskeleton only reduced joint loading on the knee or the 
lower-back. Circles represent symmetric (0°) lifts, and triangles represent 
asymmetric lifts (90°). Dark, maroon-colored shapes represent knee-to-waist lifts, 
and pink-colored shapes represent waist-to-knee lifts. Larger shapes represent 
group averages and smaller shapes are participant-average datapoints. 
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Figure 21 - Group averaged peak (A) and integrated (B) joint moments in L5/S1 
flexion, L5/S1 flexion, L5/S1 flexion, and knee flexion as explored in the hypotheses 
(H1 and H2). Conditions of exoskeleton usage are illustrated as no exoskeleton (NoE 
– gray), passive HeroWear exoskeleton (HW – blue), and active knee exoskeleton 
(KE – purple) bars for all force components. Each bar is the average JCF across the 
lifting and starting height configurations (KW and WK) and lifting degrees of turn 
(0°, 90°). Across-participant averages of independent start-end height and degree of 
lift condition are identified by shape and color: 0° KW – maroon circle, 0° WK pink 
circle, 90° KW – red triangle, 90° WK – pink triangle. 
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Figure 22 - The group averaged joint angles of L5/S1 flexion (A), L5/S1 lateral 
bending (B), and L5/S1 axal rotation (C) during symmetric and asymmetric knee-to-
waist (KW) and waist-to-knee (WK) lifting conditions. Conditions of exoskeleton 
usage are illustrated as no exoskeleton (NoE – gray), passive HeroWear exoskeleton 
(HW – blue), and active knee exoskeleton (KE – purple). Standard error of the 
mean is represented by haze surrounding about the average. Positive angles indicate 
extension in L5/S1 flexion, bending toward the right in lateral bending, and 
counterclockwise (CCW) rotation in axial rotation.  
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Figure 23 - The group averaged joint moments of L5/S1 flexion (A), L5/S1 lateral 
bending (B), and L5/S1 axal rotation (C) during symmetric and asymmetric knee-to-
waist (KW) and waist-to-knee (WK) lifting conditions. Conditions of exoskeleton 
usage are illustrated as no exoskeleton (NoE – gray), passive HeroWear exoskeleton 
(HW – blue), and active knee exoskeleton (KE – purple). Standard error of the 
mean is represented by haze surrounding about the average. Positive angles indicate 
extension in L5/S1 flexion, bending toward the right in lateral bending, and 
counterclockwise (CCW) rotation in axial rotation. 
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CHAPTER 4. LEVERAGING WEARABLE SENSING TO 

ESTIMATE JOINT CONTACT FORCES  

The third and final work of my dissertation assesses how various permutations of sensor 

types (IMUs, insoles, and EMG) influence estimation of internal joint loads at the knee 

using deep learning methodology.  The following chapter comprises of a manuscript draft 

that I intend to submit to IEEE Transactions on Biomedical Engineering or Annals of 

Biomedical Engineering and is tentatively titled “Looking from the outside in: Estimating 

Internal Joint Forces Using External Wearable Sensors”.  

4.1 Abstract 

Internal joint contact forces (JCFs) are an important metric to provide insight into 

how loading from external factors and surrounding tissues resolve within a given joint. 

This information is difficult to come by in real time without the use of invasive procedures 

such as force transducer implantation. While neuromusculoskeletal modeling is a useful 

tool for the computation of joint contact forces, it can be expensive in terms of laboratory 

equipment to collect motion capture data and computational time to process these data. In 

this outlined work, we investigated the ability of various wearable sensors to map ground 

reaction forces, body segment kinematics, and muscle activations to estimates of JCFs. To 

do this, we utilized permutations of simulated inertial measurement units (IMUs), 

simulated pressure insoles, and experimentally collected electromyography (EMG) as 

inputs into a temporal convolutional network model (TCN) to estimate normal and shear 



 
 

 

80 

knee JCFs across a diverse set of dynamic tasks.  We found that estimating normal knee 

JCFs with solely EMG (R2 = 0.79, RMSE = 0.48) performs better than input configurations 

using IMUs and insoles (R2 = 0.65, RMSE = 0.62) (p <0.01) but performs best using all 

sensors or EMG and IMUs as input (R2 = 0.85, 0.85; RMSE = 0.43, 0.42) (p <0.01). The 

provided sensor inputs were not able to map as well to shear JCFs, with the best estimations 

coming from using all sensors as input (R2 = 0.55, RMSE = 0.12). This work showcases 

the viability of performing estimations of loading inside the joint capsule using external 

sensors and deep learning methodologies. Thus, supporting the utility of a generalized joint 

loading estimator to be prescribed to inform about internal JCFs and potential injury risk 

for a given task. 

4.2 Introduction 

Joint contact forces (JCFs), the three-dimensional forces experienced within the joint 

capsule, are a useful metric for monitoring joint loading and health. JCFs are affected by 

surrounding muscles, ligaments, tendons, and external forces128 for given joint kinematics. 

The limited literature on JCFs is due to the inability to extract this metric without the use 

of highly invasive procedures to implant a force transducer within the joint, or an 

instrumented prosthetic device. Furthermore, mechanical analyses that attempt to map net 

external forces and moments to internal joint loads are not straightforward and require 

estimates of how antagonistic muscle forces are coordinated63. Fortunately, modern day 

musculoskeletal modeling provides the ability to simulate human motion for targeted tasks 

and conditions19,20 and also estimation of JCFs21–24,64. In further good news, EMG-
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informed solvers are useful in capturing the essence of muscle coactivation in hopes of 

providing a more accurate representation of forces acting upon the joint, or a more realistic 

calculation of JCFs65,66. Muscle forces contribute to the majority of the summed forces in 

the resulting JCFs, so it is a valuable addition to be able to incorporate this nuance 67,68. 

However, the process to take motion capture data through a musculoskeletal modeling 

pipeline can be computationally costly and requires accessibility to expensive equipment 

to obtain the biomechanics dataset. This also requires the ability to know how to utilize 

such tools. There is a need to be able to estimate JCFs without the use of motion capture 

data.  

The field of wearable sensing could potentially hold the solution to JCF estimations 

without motion capture. Recent advances in applications of wearable sensing have proven 

effective at estimating and predicting biological metrics such as kinematics and 

kinetics129,130 from wearable sensors and/or motion capture imaging. Ground reaction 

forces have been shown to hold a strong correlation to knee joint contact forces131 with 

force plate data. Findings such as these influence the need to develop robust systems for 

quantifying injury metrics while minimizing the amount of data collected. Among these 

developments, machine learning has made strides in informing the risk of injury during 

loading tasks using a wearable system of internal measurement units (IMUs)47. A study by 

Burton et al. (2021)132 was among the first to assess the abilities of deep learning models 

(recurrent, convolutional, and fully-connected neural networks) to predict muscle and joint 

contact forces132.  
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Machine learning has shown promising performance in measuring biological 

parameters that were once complicated and time-intensive to compute. A growing trend 

to use wearable sensors such as pressure insoles and/or inertial measurement units (IMUs) 

to estimate joint moments , internal bone forces45, and even injury risks46,47 is paving a 

way to probe the relationship between injury mitigation and internal joint contact forces. 

However, there still is a considerable amount we do not know regarding the most robust 

and widely applicable model to achieve such goals.  

The purpose of this study was to explore the intersectionality of wearable sensing 

and machine learning and to facilitate the estimation of JCFs in the knee during dynamic, 

manual labor tasks. To bridge this gap, we designed an analysis pipeline utilizing a novel 

dataset133  comprised of a diverse set of walking, lifting, squatting, lunging, stair climbing, 

etc. (Figure 31) which replicates the vast assortment of movements encountered every day 

in the workplace or in every day society. This data was previously experimentally collected 

and processed to extract JCFs as our subject-dependent ground truth. With the joint 

kinematics, which were also an output from the musculoskeletal pipeline used to capture 

JCFs105, we simulated segment linear accelerations, angular velocities, and Euler angles. 

We transformed vertical and shear ground reaction forces and center of pressure 

(mediolateral and anteroposterior) into the foot frame to replicate data streamed from 

pressure insoles from force plate data. We then applied a deep learning model on 8 

permutations of sensor input combinations between EMG, IMUs, and insoles (and a single 

super insole version) to estimate normal and shear JCFs (total of 16 models). We 

hypothesized that the combination between IMUs and insoles would be able to provide a 
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reliable estimation of normal and shear knee JCFs (R2 > 0.7) (H1). Studies already 

exploring the utility of wearable sensors find them reliable as a form of injury mitigation 

and musculoskeletal health monitoring37. Due to intersubject variability in EMG signals134, 

we expect that the EMG will not prove to be a useful feature for the TCN to map to JCFs, 

despite the relationship between muscle forces and JCFs. This essential mapping of joint 

kinematics, ground reaction forces, and, potentially, electromyography (EMG) to joint 

contact forces will serve to help identify the best practices for training machine learning 

models and the minimum input required for reliable estimation of joint contact forces across 

different manual task sets. Investigating the effects of different sensor inputs on JCF 

estimation across a vast array of tasks on multi-joint internal joint loading will enable the 

field to move forward with reduced sensor sets to estimate JCFs in environments outside 

of the lab. In doing so, we hope to wearable sensing systems in conjunction with machine 

learning can provide a greater awareness of the susceptibility to eventual tissue and bone-

damaging JCFs, and ultimately injuries, in the workplace. 

 

4.3 Methods 

4.3.1 Experimental data collections 

To perform this study, we leveraged data from the previous chapters. In chapter 2, 

nine participants (Table 1) performed symmetric (0°) and asymmetric (90° and 180°) lifting 

conditions with starting and ending positions alternating between knee-height, waist-
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height, and shoulder-height as outlined in sections 2.3.2 – 2.3.3.  In chapter 3, ten 

participants (Table 4) performed symmetric (0°) and asymmetric (90°) lifting conditions 

with starting and ending positions alternating between knee-height and waist-height with 

no exo (1), an active knee exo (2), and a passive back exo (3) as outlined in sections 3.3.2.1 

– 3.3.2.2.  Combined these two datasets provide data on lifting across 19 different 

participants; however, the magnitude of datapoints for machine learning purposes was still 

insufficient. We turned to an open-source dataset collected in our lab group133 which 

contains informative cyclic and noncyclic daily tasks which we believed would not only 

add a considerable amount of data, but also would broaden our JCF estimation abilities to 

a diverse set of movements. Within this study, twelve participants (Tables 5 and 6) 

performed tasks which include calisthenics, various modes of walking, lifting weight, stair 

ambulation, agility tasks (e.g., cutting), etc. All 31 participants across the three studies 

included within this work provided signed consent to the study prior to data collection in 

experiments approved by the Georgia Institute of Technology Institutional Review Board. 

4.3.1.1 Motion capture 

 Participants in the unassisted lifting study (Chapter 2) and exo lifting study 

(Chapter 3) wore a full-body reflective marker set to record segment positions (Vicon, 

Oxford, UK, 100Hz). Participants in the dynamic tasks study wore a lower-limb and torso 

reflective marker to record segment positions (200Hz).  

 

 



 
 

 

85 

Table 5 - Dynamic taskset participant weights133. . Standard deviation = SD. 

Participant Weight (kg)  
1 78.9 
2 82.2 
3 113.5 
4 71.5 
5 79.1 
6 62.3 
7 87.6 
8 84.1 
9 67.5 

10 65.1 
11 64.0 
12 67.6 

Mean ± SD 80.7 ± 15.0 

 

Table 6 - Dynamic taskset group demographics. . Standard deviation = SD. 

 Gender Age (years) Height (cm) 

Mean ± SD 7M / 5F 21.8 ± 3.2 176.7 ± 8.6 

 

4.3.1.2 Ground reaction forces  

 Across all three studies, we collected ground reaction forces (GRFs) under each 

foot (Bertec, Columbus, OH, USA, 2000 Hz). Steady-state walking, running, step over, 

and some calisthenics trials were conducted on a split-belt instrumented treadmill, whereas 

all other tasks were performed on over ground force plates (2000 Hz – unassisted & exo 

lifting studies; 1000 Hz dynamic tasks study).  
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4.3.1.3 Electromyography  

In the unassisted lifting study (Chapter 2) and exo lifting study (Chapter 3), we 

collected surface electromyography (EMG) (Delsys, Natick, Massachusetts, USA, 2000 

Hz) from seven muscles in the right leg. These muscles included tibialis anterior (TA), 

lateral gastrocnemius (LG), rectus femoris (RF), vastus medialis (VM), vastus lateralis 

(VL), bicep femoris (BF), and semitendinosus (ST) (Figure 24). In the dynamic task study 

surface EMG was collected bilaterally, on the left and right legs. These muscles included 

tibialis anterior (TA), rectus femoris (RF), vastus lateralis (VL), and bicep femoris (BF). 

SENIAM procedures informed sensor placements76. 

We bandpass filtered (20-400 Hz, 2nd order Butterworth), full-wave rectified, 

lowpass filtered (6 Hz, 5th -order Butterworth), and half-wave rectified raw EMG signals. 

Across all studies, the task where the most muscles experienced a peak activation was 

utilized for normalization. The top five maximum activations per muscle within the 

condition were averaged to provide the normalization factor for each muscle, which was 

then applied to the respective signals in all trials.  

4.3.2 Musculoskeletal analysis 

Motion capture data from the unassisted lifting study (Chapter 2), the exo lifting 

study (Chapter 3), and the dynamic tasks study was modeled with a modified OpenSim 

model (Full Body Running (FBR) model) (SimTK, Stanford, CA, USA)22. We selected 

this model because it has a high resolution of knee muscles to better represent the effects 
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of surrounding muscles and tissues on internal joint forces. We modified ranges-of-motion 

constraints on the model within the arms, torso, pelvis, and legs to better fit the participants’ 

movements. For the lifting tasks performed in Chapters 2 and 3, we distributed half the 

dumbbell mass (25 lbs., 12.5 lbs.) to each hand using OpenSim WeldJoint to incorporate 

the effects of the mass on the skeleton.  

The same pipeline used in the studies outlined in sections 2.3.3 and 2.2.3.2 of 

performing scaling, Inverse Kinematics, Inverse Dynamics, Muscle Analysis, Joint 

Reaction Analysis, and the Calibrated EMG-Informed Neuromusculoskeletal Modeling 

Toolbox (CEINMS)78 was applied to the dynamic taskset study. OpenSim version 4.0 was 

used for all relevant analyses. We then divided the resulting knee JCFs into normal and 

shear components. We calculated shear JCFs using the Euclidean norm of the anterior-

posterior and mediolateral shear forces. JCFs were normalized by the product of participant 

mass and acceleration of gravity (x BW) and were used as our ground truth for machine 

learning practices outlined in section 4.3.4.2.  

4.3.3 Simulating Sensors 

IMU and insole simulation provides an opportunity to utilize these diverse datasets 

and test how comprehensive their information can be for a machine learning model 

attempting to estimate internal joint forces. To do so, we utilized the joint angle outputs 

from Inverse Kinematics as inputs to OpenSim’s Forward Kinematics tool to compute the 

simulated kinematics (linear accelerations, angular velocities, and Euler angles) for each 

desired segment (torso, pelvis, thighs, shanks, and feet). Simulated IMU placements are 
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shown in Figure (24). GRFs and center of pressures (COPs) were read from force plates 

and transformed into their respective foot frame to model a pressure insole’s reference 

frame. The Euclidean norm of the mediolateral and anteroposterior shear forces from the 

force plate was used as a super insole configuration. 

 

Figure 24 – Placements of wearable sensors both simulated and experimental. 
Simulated IMUs are shown in blue and are placed anteriorly on the thigh, shank, 
and foot segments, and posteriorly on the torso and pelvis. EMG are shown in red 
and measure muscle activations from the rectus femoris (RF), vastus medialis (VM), 
vastus lateralis (VL), tibialis anterior (TA), semitendinosus (ST), biceps femoris 
(BF), and lateral gastrocnemius) (LG). Simulated pressure insoles are shown in 
green and captured vertical and norm shear GRFs, as well as anteroposterior and 
mediolateral center of pressure (COP).  

 

The lifting studies were conducted with only the right left instrumented with EMG; 

therefore, to maintain consistency in sensor configurations across all three studies, we 
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mirrored key IMU and insole signals on the left leg as if they were to be expressed as the 

right leg in the dynamic task study. This allowed us to double the knee data of this taskset. 

4.3.4 TCN Model 

4.3.4.1 Structure 

Two separate single-headed TCN models were used for JCF estimations, one for 

normal knee JCFs and the other for shear knee JCFs – both with the same structure. The 

size of the initial layer of the TCN varied depending on the desired sensor input types, but 

consisted of 400 channels, and one output variable.  The hyperparameters set in this model 

(Table 7) proved effective for knee joint moment estimations135. The effective time history 

required from the hyperparameters was 250 datapoints.  

Table 7 - TCN Hyperparameters used. 

Epochs Kernel size Channels 
sizes Levels Dropout 

probability Patience 
Effective 
history 

limit 

Learning 
rate 

Loss 
function 

250 5 80 5 0.15 20 250 5E-5 MSE 

 

4.3.4.2 Training, validation, and testing data  

Data from the unassisted lifting study, exo lifting study, and dynamic tasks study 

were utilized in the performance of this JCF estimator. Simulated IMUs were upsampled 

to double their collection frequency, this led to an increase from 100 Hz to 200 Hz. We 

downsampled EMG and simulated insoles to temporally align with the resampled 
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simulated IMU data.  As outlined in section 4.3.1.3, the dynamic task dataset comprised of 

4/7 overlapping EMG from muscles experimentally collected in the lifting studies. Because 

the experimental EMG are simultaneously optimized in CEINMS with the simulated EMG 

(from non-experimentally collected muscles) to resolve for muscle forces, we were 

confident in utilizing the adjusted muscle activations for the remaining muscles (ST, LG, 

VM) for consistency in sensor inputs across studies.  

We designed the input data tables to contain the model’s features and labels for the 

ipsilateral (right) and contralateral (left) leg. The features included 9-axis IMUs (x,y,z for 

linear acceleration, angular velocity, and Euler angles), insoles (normal force, shear force, 

mediolateral COP, and anteroposterior COP), and EMG (RF, VM, VL, TA, LG, BF, ST).  

The labels consisted of normal and shear JCFs from the right and left knee. The model was 

then configured to read in the relevant ipsilateral features and desired outcome metric to 

estimate – the other variables were ignored.   

The TCN was developed to function with subject independence when training. Leave-

one-out cross-validation136 approach was applied with the participants by excluding one 

participant for validation, and another for testing. The unassisted and exo lifting studies were limited 

in their ability to estimate JCFs for tasks outside of lifting, so we constrained the model to only use 

their data in the training set, but not for validation or testing. This means there were always 29 

participants in the training dataset (although 19 of those participants couldn’t contribute to most of 

the task types).  
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Figure 25 – Pipeline of joint contact force estimations. This process leverages 
measuring joint and muscle level biomechanical data throughout a diverse taskset 
and finding the configuration of wearable sensors which leads to the best estimates 
of internal joint forces.  

We trained, validated, and tested two batches of eight different models (16 total) – 

one batch for normal JCFs and the other for shear JCFs—to evaluate how varying sensor 

input configurations affect JCF estimation performance and what is the minimal set of 

sensors which can provide a reliable estimation metric (R2 > 0.7)137. The eight versions 

consisted of the following permutations: IMUs + insoles + EMG, IMUs + insoles, IMUs + 

EMG, EMG + insoles, IMUs, insoles, super insoles, and EMG. Each model variation could 

run up to 200 epochs, with early stopping permissible after reaching the preset patience 

value of 20 (Table 7).  
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4.3.5 Statistical analysis 

 A one-way repeated measures Analysis of Variance (ANOVA) and post hoc 

Bonferroni pairwise multivariate comparison test informed on the significance of the 

wearable sensor permutations on JCF estimation (H1) with the threshold for significance 

set at α = 0.05. In the ANOVA, participants were defined as the random effects with the 

various sensor permutations as the fixed effect. The correlation coefficient (R2) and root 

mean squared error (RMSE) were  computed between the estimated JCFs and ground truth 

for each trial. Individual-participant averages and group averages for the R2 and RMSE of 

each task type and overall were computed. Custom Matlab scripts were employed for these 

statistical analyses (Mathworks, Natick, MA). 

  

Figure 26 - Group averaged R2 values in normal (A) and shear (B) knee joint 
contact forces. The color of each bar relates to the wearable sensor configuration 
used as inputs for the TCN to estimate knee JCFs. Significant differences between 
wearable sensor configurations are shown by a hovering bar.  
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4.4 Results 

4.4.1 Joint contact force estimates – generalized tasks  

We investigated the effects of wearing IMUs, EMG, and insoles on offline normal 

and shear JCF estimation. Additionally, we assessed how combinations of these wearable 

sensors can improve JCF estimations to identify the minimal sensor set required to obtain 

an R2 > 0.7137. We leveraged data from dynamic datasets including movements such as 

walking, lifting, using stairs, jumping, and more to help us understand the utility and 

feasibility of JCF estimations in different contexts.  We found that the TCN model was in 

fact able to map wearable sensor data to the ground truth of normal knee JCFs. Across all 

tasks utilized in our analyses, wearable sensor configurations which included EMG-only 

achieved at least an R2 value of 0.79 when estimating normal knee JCFs. Adding insoles 

(R2 = 0.82), IMUs (R2 = 0.85), or both (R2 = 0.88) to an EMG-only sensor set only slightly 

augmented the model’s normal JCF estimation abilities without significance. The 

following sensor configurations have significantly greater R2 values than sensor 

combinations with IMUs and/or insoles (p <0.01): (1) EMG and IMUs, (2) all, (3) EMG 

only, and (4) EMG and insoles. Without EMG, the model failed to map IMUs (R2 = 0.59) 

to JCFs without insoles (IMUs + insoles, R2 = 0.65), but it also poorly estimated normal 

JCFs with solely the use of GRFs (R2 = 0.45). (Figure 26A). 

To gain a better sense of the model’s accuracy in estimating JCFs, we also 

calculated the RMSE. In task agnostic (generalizable) normal knee JCF estimation, the 

sensor input configuration resulting in the lowest error was all sensors (IMUs, EMG, and 
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insoles) with an RMSE of 0.42, followed by the combination of IMUs and EMG sensors 

(RMSE = 0.43). The following sensor configurations have significantly lower RMSE 

values than sensor combinations with IMUs or insoles (p <0.01): (1) All, (2) EMG and 

IMUs, (3) EMG and insoles, and (4) EMG only. Like the R2, the RMSE significantly 

increases without the inclusion of EMG. (Figure 28A).  

 

Figure 27 - Group averaged R2 values in normal (A) and shear (B) knee joint contact 
forces in walking, stairs, manual labor, and random task groups. The color of each 
bar relates to the wearable sensor configuration used as inputs for the TCN to 
estimate knee JCFs. 

 

On the other hand, we found the TCN to be unsuccessful in identifying relevant 

features and relationships between wearable sensor data and shear knee JCFs as the ground 

truth. Overall, none of the wearable sensor configurations achieved an R2 > 0.7137 (Figure 

26B). Using the combination of IMUs, insoles, and EMG again performed the best of the 

configurations (R2 = 0.56) in estimating shear knee JCFs. However, IMUs appear to be 
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responsible for this capability as all the top performing configurations include this sensor. 

An IMU-only sensor set could moderately estimate shear knee JCFs (R2 = 0.46), but the 

addition of insoles (R2 = 0.50) or EMG (R2 =0.53) show minor, but not significant, 

improvements in the TCN’s ability to map to shear JCFs. Sensor configurations utilizing 

insoles or a super insole could not converge on a strong solution to connect GRFs to shear 

knee JCFs and shared R2 < 0.12. The following sensor configurations have significantly 

higher R2 values than sensor combinations without IMUs (p <0.01): (1) All, (2) EMG and 

IMUs, (3) IMUs and insoles, and (4) IMUs only. 

The performance in task agnostic (generalizable) shear knee JCF estimation 

followed a similar trend with the R2. The following sensor configurations have significantly 

lower RMSE values than sensor combinations without IMUs (p <0.01): (1) EMG and 

IMUs, (2) all, (3) IMUs and insoles, and (4) IMUs only.  

4.4.2 Joint contact force estimates – industry-relevant tasks  

In order to consider deploying this approach as a potential mitigation strategy for 

joint force and health monitoring, it is important to characterize how task classification 

may influence the TCN’s ability to discern task-specific knee JCFs for reliable estimations. 

We honed in on locomotion modes commonly experienced during the average daily 

manual workload of a manual labor employee: walking, climbing stairs, lifting, and 

random, aimless movement.  The group of walking tasks included normal walking at 

different speeds, loaded carriage, walking backwards, walking on an inclined slope, and 

walking on a declined slope. The group of stair tasks included stair ascent and descent.  
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Manual labor tasks comprised of lifting with and without added weight, lunges, squats, sit-

to-stand, tug-of-war, step ups, and ball tossing. Lastly, the random task group contains 

movement which occurs aimlessly throughout the day: meandering, turning, running into 

something or being bumped (push-pull), stepping over obstacles, standing, awkward 

stances (twister), and overcoming a curb.  

 We found that the TCN excelled at estimating normal knee JCFs across each 

locomotion mode. In all task groups, the sensor configuration of EMG and insoles meets 

our goal of achieving a performance of R2 > 0.70 in offline joint loading estimations, with 

stair tasks being the lowest at R2 = 0.72 (Figure 27A).  The TCN showed its ability to map 

an EMG-only sensor set to normal knee JCFs in walking, manual labor, and random 

movement tasks. The combination of IMUs and insoles are relatable to normal knee JCFs 

in walking (R2 = 0.76). IMU-only and insole-only sensor sets map poorly to normal knee 

JCFs, with the except of IMU-only achieving an R2 of 0.73 in walking. 
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Figure 28 - Group averaged RMSE values in normal (A) and shear (B) knee joint 
contact forces. The color of each bar relates to the wearable sensor configuration 
used as inputs for the TCN to estimate knee JCFs. Significant differences between 
wearable 

As shown in 4.4.1, TCN struggles to find the relationship between the sensor 

configurations as inputs to the shear knee JCFs as its ground truth across each locomotion 

mode. Similar to results of estimating normal knee JCFs, locomotion modes of walking, 

manual labor, and random tasks achieve higher R2 values in shear knee JCF estimates. In 

each task group, sensor configurations using IMUs (IMUs + insoles + EMG, EMG + IMUs, 

IMUs + insoles, IMUs-only) are the relatively stronger performing sensor sets of the group. 

The combination of IMUs and insoles performed as well as having an R2 of 0.57 in walking 

showing the usefulness of GRFs in estimating shear knee JCFs, as the average R2 from 

using an IMU-only sensor set is 0.37 (Figure 26B). On the other hand, sensor 

configurations containing insoles, are the weaker performing sensor sets.  All combinations 

of sensor sets obtained an R2 < 0.20 across all locomotion mode groups.  
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4.5 Discussion 

We hypothesized that the combination of IMUs and insoles as inputs to our model 

would be able to estimate knee JCFs with a performance of R2 > 0.7137. We rejected this 

hypothesis, as we found that EMG are necessary for the accomplishment of this goal.  

Because the knee is a lower-limb joint, we anticipated that the lower-limb and torso 

segment kinematics and vertical GRFs would provide a sufficient amount of information 

to map from the simulated inputs to the normal and shear knee JCF ground truths (H1). 

Work by Stetter et al., (2019)138 showcased success of IMUs to estimate knee joint forces 

(joint moments) in a two-sensor setup. Sancho-Bru et al. (2023)139 showed the ability to 

capture foot contact forces using pressure insoles. A study by Elstub et al., (2022)45 

demonstrates the success of estimating tibial bone forces with the use of an IMU and 

pressure insole. Altogether these efforts supported out hypothesis that IMU and insole-

Figure 29 - Normal knee JCF estimation using real sensor inputs. Average R2 value 
across all tasks using IMUs + Insoles + EMG (A). Knee joint angles during a single 
gait cycle from a representative participant, temporally aligned with time series 
tracking of normal knee JCFs compared to the ground truth (B). 
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informed machine learning JCF estimates would be a reliable sensing system for normal 

and shear JCFs. In actuality, we found that models trained with EMG in their combinations 

all provided reliable normal JCF estimates (R2 > 0.7). Studies have shown the intra and 

intersubject variability in EMG which we believed would significantly hinder our ability 

to estimate JCFs. However, we believe the use of subject-dependent ground truth data for 

model training likely led to its success in drastically improving normal knee JCF estimates. 

Figure 29 showcases in a time series tracking of normal knee JCFs during lifting tasks, that 

EMG-only estimate is the only version which maintains satisfactory JCF tracking even 

through the nuances of the ground truth with changing knee flexion angles, especially knee 

flexion. 

Observing the capability of estimating normal knee JCFs across different task groups 

solidifies our confidence in recommending the use of an EMG-only wearable sensing 

system for this purpose. The addition of other sensor types does not significantly improve 

the model’s performance captured as R2 or RMSE values (Figures 26-28). This leads us to 

believe that there may be too much data being input to the TCN model and negatively 

influencing how the TCN identifies patterns. Therefore, to further improve normal knee 

JCF estimation, the next task would be to investigate which subset of muscle activations 

as input channels to the TCN are absolutely necessary to obtain similar performance.  

We also we reject the hypothesis (H1) that IMUs and insoles could estimate shear 

knee JCFs with an R2 of at least 0.7. In fact, none of the sensor configurations provided a 

strong estimation capability. Giarmatzis et al. (2020)140 predicted knee JCFs in walking at 
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varying speeds using an ANN and a support vector regression model, while inputting 

kinematic and kinetic data140. Their predictions performed well with moderate to strong 

Pearson R values (0.45 – 0.85) with a leave-one-out cross-validation136 approach, and 

observed good knee JCF predictions without the use of ground reaction forces140. One 

aspect to consider is their use of motion capture, whereas our system was solely wearable 

sensor based – but modeled with simulated IMUs and insoles with experimental EMG as 

inputs. Additionally, the shear forces in the majority of the tasks used (except e.g., cutting) 

are not very large. Consequently, it is possible that the model was unable to track shear 

knee JCFs across these different tasks due to the subtle changes or inability to relate the 

sensor channel inputs to those small magnitudes.    

  The poor performance of the TCN model in estimating shear knee JCFs proposes a 

few recommendations for future investigations. First, as outlined in Chapters 2 and 3, our 

goal is to find and eventually implement mitigation technologies which reduce hazardous 

peak and cumulative joint loading. Informing employees about the injury risk associated 

with a certain work tasks would not be contingent upon continuous monitoring of JCFs – 

we place higher priority on alerting workers about large joint loads and prolonged exposure 

to these loads.  Therefore, there is a need to discover if reducing datapoints to concentrate 

the model’s estimation on peak and/or cumulative loading would lead to significant 

changes in its performance, especially in its potential transition into a biofeedback 

paradigm. Second, moving forward with a sensing system comprised of EMGs, IMUs, and 

insoles may be overkill. Seeing the promising and useful results that EMG alone can 

provide regarding normal knee JCFs, running additional machine learning-based 
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estimations and developing various prototypes of wearable sensing suits with a minimized 

amount of sensors (e.g., not all seven EMG) would be imperative to know how practical 

and deployable this mitigation strategy could be for the workplace and every day wear.  

As an extension of our work, we sought to test the ability of the strongest performing 

trained model (all sensors, estimating normal knee JCFs) to estimate normal knee JCFs 

with the use of all real sensors. We see that an estimation ability of R2 = 0.86 plunges to 

R2 = 0.26 and fails to uphold its ability to track knee JCFs temporally (Figure 29). This 

highlights the poor ability of the TCN model that was trained on simulated sensor data to 

map JCFs computed with real sensors as inputs instead. Thus, emphasizing the need for 

advanced machine learning methodologies such as transfer learning to find the proper 

transform from simulated to real sensor data and boost this model’s overall utility in 

estimating JCFs.  

4.5.1 Limitations 

There are a few limitations to note in the conduction of this research. Previous 

success in estimating joint moments showed a strong performance when including joint 

angles as an input, often from motor encoders. Because we would prefer to deploy a sensing 

system which can function without outputs from exos, we prefer a model which does not 

require additional information to succeed. However, it is possible that knee joint angles 

could have allowed the model to estimate normal and shear JCFs better.  Another limitation 

is blending datasets which only contain lifting tasks which a larger dataset which contains 

25+ diverse task types. Initially we feared that the model would overfit for the lifting 
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conditions; however we found the two lifting-only datasets did not provide enough 

datapoints for overfitting. In order to fully leverage the power of having a 31-participant 

dataset, it would likely allow the model to perform even better if all individuals had data 

from each task type. In preliminary validation analyses using the dynamic taskset, we saw 

a decrease in the model’s ability to estimate joint moments when including the two lifting-

only datasets to the training datasets. It is possible that the addition of data for only one 

task could be hurting the overall performance of the model in JCFs estimations.  

 

4.6 Conclusion 

 This study examined the performance of a deep learning model in estimating 

normal and shear knee JCFs in a dynamic and diverse taskset using different combinations 

of wearable sensors.  We found that the combination of EMG and IMUs allotted the best 

estimations of normal JCFs (R2 = 0.85) independent of task, whereas no combination of 

sensors provided an estimate of shear knee JCFs with R2 values greater than 0.7. Our 

findings in normal knee JCFs estimations also shed light on the importance of EMG in 

estimating ground truth JCFs computed using EMG-assisted methods65,105. In shear knee 

JCFs estimations, although not significant, IMUs appeared to provide the strongest 

mapping to JCFs compared to other inputs. Altogether, the results of this research will 

enable the field to move forward with reduced sensor sets to more practically estimate JCFs 

in environments outside of the lab. Thus, further supporting our awareness of internal joint 
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loading and our overall susceptibility to JCFs injurious to tissues and bones in the 

workplace.  
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4.9 Supplementary Figures for Chapter 4 

 

Figure 30 - Time series of knee joint kinematics and tracking of normal knee JCF 
estimations from various sensor configuration compared to the ground truth.  The 
data shown stems from a representative participant performing different lifting 
with a 25 lb. weight. TCN estimations using IMUs + insoles + EMG are shown with 
a pink line, EMG only with a green line, IMU only with a burgundy line, and insoles 
only with a blue line. 
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Figure 31 - List of tasks included in the dynamic taskset (N = 12). 
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CHAPTER 5. CONCLUSION 

In this dissertation, we explored to accomplish three main objectives: 1) to understand 

the characterization of lower back and knee JCFs across manual lifting which varied in 

height and degree of twisting (symmetry), 2) measure the effectiveness of exoskeletons as 

a mitigation strategy for reducing lower back and knee JCFs in symmetric and asymmetric 

manual lifting tasks, and 3) determine the minimal sensor set required to reliably estimate 

normal and shear knee JCFs using deep learning. In doing so, I conducted 3 studies (and 

adopted a 4th additional dataset) on healthy, able-bodied participants whose outcomes are 

outlined in 3 chapters.  

The first work, Chapter 2, a submitted article to the Journal of Applied Biomechanics 

(Davenport et al., 2024)105, proposes a framework that relates JCFs in a lower back joint 

(L5/S1) and knee joint to an assortment of symmetric and asymmetric manual lifting tasks. 

This framework allowed us to identify which task(s), symmetric, below-the-waist lifting, 

expose the joints to higher internal joint loads, potentially indicating work-specific 

movements that exposes workers to higher risks of injury. We also found that the lower 

back and knee joints share a directly proportional relationship in JCF load distribution as a 

two-joint system independent of task. This result supports the possibility of an inherent 

motor control principle to limit peak loading at any one joint when performing injurious 

movements. I anticipate that this research will spark further analyses and investigations 

which probe to understand JCFs throughout the musculoskeletal system in various 

movements and environments. This could open possibilities to exploring motor control of 
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joint forces with intact nervous system based on experimentally collected and computed 

joint kinematics and kinetics and muscle activity. 

Chapter 3, a manuscript undergoing internal review prior to submission, is work I 

intend to submit to IEEE Transactions on Medical Robotics and Bionics. This chapter 

provides a quantitative assessment on the effectiveness of exoskeletons in reducing acute 

and chronic joint loading in the manual lifting conditions that elicited higher JCFs at the 

lower back joint (L5/S1) and knee joint in Chapter 2 (symmetric, below-the-waist lifts). 

This chapter contributes a novel method of accounting for exo assistance prior to 

performing inverse dynamics. By including exo assistive torques (active KE) and forces 

(passive HW) prior to inverse dynamics, the exos assistance vectors were factored in as 

external forces, each applied at a certain moment arm distance away from the joint to be 

calculated into the overall net force (joint moment). This method allowed us to see that the 

powered assistance we provided at the knee caused an increase in the biological knee 

moment, which otherwise may not have been captured by subtracting exo torque from the 

total joint moment. This work also showed that both the HW and KE reduced peak and 

integrated JCFs at the lower back and knee, respectively, but neither were able to 

significantly reduce (or increase) JCFs at the unprescribed joint. Although, on average the 

HW did reduce normal and total knee JCFs. I hope this research may inspire This research 

highlights an important under-the-skin effect of exos, not often focused on throughout 

literature. I am hopeful that this research inspires the continued exploration of the unseen 

interaction effects of wearable devices not only on internal joint forces, but also throughout the 

musculoskeletal system prior to true, mass implementation as a mitigation strategy. Also, this 
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research can inform the design and implementation of work-specific exos to increase safety 

in manual labor professions. 

I plan to submit to the research proposed in Chapter 4 to the IEEE Transactions on 

Biomedical Engineering or Annals of Biomedical Engineering. This work probes a 

different injury prevention strategy: looking to deep learning to support JCF estimations 

without the use of neuromusculoskeletal modeling. With knowledge of the utility of 

wearable sensors such as IMUs, EMG, and pressure insoles to inform us of other 

biomechanical metrics, our goal was to find out the most minimalistic combination of 

sensor types needed to support the TCN’s capability to reliably estimate normal and shear 

JCFs. The structure of the model utilized in this aim’s analyses supports the 

generalizability of JCF estimations across a broad array of dynamic, and manual labor-

inspired tasks.  This work shows promise to a trajectory of JCF estimative research to 

provide users with instructional feedback on mechanical modifications to influence and, 

hopefully, lower JCFs. This approach also serves as a cost-effective tool that can inform 

rehabilitative strategies. 

At the conclusion of this combined work as a full project, still some unanswered 

questions remain. Because the focus of my work did not include the pathophysiological 

mechanisms responsible for injury development and all data was collected using healthy 

individuals, I still am curious about how the JCFs characterized in this work scale to those 

elicited during actual joint injury and which component(s) in the responsible biomechanical 

injury mechanisms are we actually capturing? If a certain aspect or metric from JCFs can 
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be extracted that is directly correlated some portion of an injury mechanism, we can 

solidify this metric as a biomarker to injury. I believe a long-term study leveraging the use 

of wearable sensing-based JCF estimates would permit the monitoring of injurious forces 

as they occur and a better way of mapping these inputs to the occurrence of injuries. Having 

pre- and post- JCFs information as context to an injury occurrence would provide an 

opportunity address this gap and further support the field in addressing injury mitigation 

strategies. My second looming question is how would this data look in a population which 

is more representative of those working manual labor jobs – or even those with a history 

of recurring or continuous (neuro)musculoskeletal injuries?  I appreciate that this project 

provides a baseline understanding, a framework, to gauge JCFs in a best-case scenario. 

However, to be a practical and effective solution to reducing injurious joint forces, and 

injuries, this would need to be based on a diverse population. Age-related changes to 

tendons141 and other tissues surrounding the joints, as well as osteoarthritis, could have a 

significant effect on JCFs and should be evaluated. Using the wearable technology 

interventions outlined in this research as a  monitoring or instructional tool could pose an 

ability to inform of predisposition to injury reoccurrence for those with existing injuries. 

Altogether, this body of work explored under-the-skin, bone-on-bone, JCFs as a 

metric to infer joint injury risks during dynamic, manual labor tasks and assessed how 

wearable technology (exos and sensors) can be viable solutions to alleviating these internal 

joint forces. I anticipate future work delving into JCF-controller exoskeletons, real-time 

biofeedback paradigms with wearable sensors, and in the wild experimentation with 

portable wearable assistance systems. 
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