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Introduction: Falling is the leading cause of injury related death in older adults [1]. Exoskeletons have the potential to augment balance 
to reduce fall rate, however, classical control strategies are hand engineered and often rely on the cyclic nature of locomotion and are 
therefore not well suited for transient movements. Recently, a deep learning-based task-agnostic controller based on the user’s 
physiological state was shown to decrease metabolic cost across cyclic and non-cyclic tasks, showing this controller’s ability to 
generalize [2]. However, the effectiveness of this approach for perturbation recovery has not been investigated. We anticipate that the 
timing of joint moment-driven exoskeleton assistance will differ for approaches that aim to augment balance. Metabolic cost-reducing 
approaches apply joint moment assistance that is delayed relative to the user’s joint moment, while faster-than-human assistance has 
proven beneficial for balance augmentation [3][4]. The aim of this study is to (1) optimize a deep learning model that predicts future 
joint moments, enabling faster-than-human control and (2) investigate the ability of this model to generalize to perturbation conditions 
outside of the training set, to test the robustness of our approach in handing novel perturbations. We hypothesized that (1) estimation 
accuracy will decrease as forecasting increases and (2) estimation accuracy will be lower for held-out-conditions. 
 
Methods: We collected a training data set of able-bodied individuals (N=17) undergoing translational ground perturbations. The 
perturbation trials systematically varied perturbation magnitude, onset timing, and direction (Fig. 1A). We collected motion capture, 
force plates, and inertial measurement unit (IMU) data. We calculated inverse dynamics to obtain frontal and sagittal plane hip moments. 
The full experimental protocol has been previously described by Leestma et al. [3]. We trained a series of temporal convolutional 
networks (TCN) that used wearable IMUs (pelvis, torso, and bilateral dorsal foot, shank, thighs) to predict joint moments. First, we 
trained models that forecasted joint moments 0ms (estimation at current time), 40ms, 80ms, and 120ms into the future. We also 
conducted a leave-n-conditions-out validation where we held out pairs of directions to test the ability of the models to generalize to 
unseen perturbation conditions. We computed the estimation accuracy using R2 and root mean square error (RMSE). 
 
Results & Discussion: As hypothesised, model accuracy decreased as forecasting increased. This is expected as sensor input data is 
further away from the outcomes we are estimating. Still, most 
average R2 values for estimating hip moment across 
forecasting times were above 0.80 except for frontal plane at 
our furthest forecasting (Fig. 1B). This accuracy has been 
previously shown to allow for highly controllable 
exoskeletons [2]. Contrary our second hypothesis, we found 
that estimation accuracy was similar when conditions were 
held out compared to when the full training set was used (Fig. 
1C). This might be due to the similarity between the held-out 
conditions and the ones still included in training. This 
effectively shows our model’s ability to generalize to unseen 
perturbation directions. 
Future work will (1) deploy our forecasting estimators to 
control a 2-degree-of-freedom hip exoskeleton and (2) further 
explore the generalizability of our model by excluding 
different groups based on perturbation magnitude and timing. 
 
Significance: We demonstrate (1) deep learning models can 
reliably estimate future physiological states which enables 
faster-than-human exoskeleton assistance and (2) our model 
can generalize to unseen perturbations.  Together, this type of 
controller shows potential to assist perturbed locomotion in 
highly dynamic real-world environments. 
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Figure 1: (A) Platform translations were delivered in the mediolateral and anterior 
posterior directions as well as the respective diagonals. (B) Joint moment estimation 
R2 across forecasting times. (C) Joint moment estimation R2 for direction pairs 
excluded for the training set. Time series plots show ground truth (black) and 
estimated (colors) joint moment for a representative trial for the excluded direction 
pairs. The perturbation happens at time 0 and the shaded area represents the 
proposed exoskeleton actuation window. 
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