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Introduction: Upper-body wearable devices such as exoskeletons have the potential to reduce injuries for industry workers completing 

highly repetitive or high load tasks. The challenge lies in developing effective control schemes over a set of diverse tasks while 

accounting for the physical interaction between the human and the device [1].  Unlike lower-body wearable devices where a design 

developmental framework has been established based on lower body biomechanics for common cyclic tasks such as walking or running 

[2], the upper body regime lacks a formal “roadmap” tailored to guide device designs. This is principally because upper-body tasks are 

high DOF, unstructured and non-cyclical. – all features that pose challenges for computing inverse dynamics.  Our research aims to fill 

this gap by compiling data from real-world upper body tasks in a highly instrumented lab setting to drive computational models and 

calculate upper body joint-level outcome measures that can be used to identify injury “hotspots”.  In this study, we test the following 

hypothesis with a focus on the shoulder joint: a) increased interaction loads will lead to an increase in joint level biomechanical demand* 

that is exacerbated by b) increased proximity to the workspace extremes  where demand* is measured via joint moments, powers, work, 

and impulse.  
 

Methods: Our setup involved replicating a shelf stacking task across the upper body 

workspace for one arm.  This was done by a 2x three level shelf setup (Fig.1). The 

participant (N=1) performed a static holding task at a specified workspace region by 

moving a weighted object to and from a specified home position..  Three interaction 

loads were used: Low (0.2kg), Medium (1.82kg), and High (3.75kg).  Three task 

locations were chosen that involved moving the load closer to the “extreme” parts of 

the workspace, defined as needing greater than 90 degrees of the shoulder elevation 

angle, for a single arm.  These were location A (close sagittal), location B (extreme 

sagittal), and location C (extreme sagittal + frontal).  Motion capture data were used 

to compute inverse kinematics and inverse dynamics in OpenSim while accounting 

for the added mass of the interaction loads with a specific focus on the shoulder joint 

[4]. We calculated 

shoulder elevator joint 

moment, joint power, and 

joint impulse and joint 

work to assess task 

demand and compare them 

across load  and workspace 

region. 

 

Results & Discussion:   

As expected, within a 

given workspace location 

(A, B, or C),  when 

interaction load increased 

(blue, green, red), the joint 

moment, net joint work 

and net joint impulse also increased (Fig. 2). Joint power output was more variable, and increased with load only for tasks at the 

workspace extremes.  Within a given interaction load, joint moment, joint power, and net joint work all increased as the movement task 

approached the workspace extreme (A to B to C), while net joint impulse remained invariant across the workspace.  Interestingly, adding 

asymmetry by layering sagittal + frontal ROM demands had little effect on mechanical demand. Overall, in line with biomechanical 

intuition,  our data set  identified key ‘hotspots’ in the acceleration and braking phases of the motion (dynamic phases) that were more 

pronounced with higher interaction loads (Fig 2 – dark shaded). 

 

Significance: Key significance of this study is the application of computational biomechanics to understand upper-body joint-level 

mechanical demands across a range of industry relevant tasks.  Data can now be analyzed to determine shoulder elevator joint torque vs 

angle curves than can be directly translated to upper body wearable device actuator design specifications. These data can also be used 

as ‘ground truth’ to train data-driven machine learning models that may be deployed for exoskeleton control [4]. 
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Figure 2: Shoulder mechanical demand for various weights and workspace locations.  Dark shaded regions indicate 

dynamic motion, and light shaded region indicates when the interaction load is held statically. 

Figure 1: Experimental Workspace Setup for Upper 

body Tasks.  Three locations are shown: A: Non-

extreme Workspace, B: Extreme Workspace Sagittal 

Plane, C: Extreme Workspace Frontal Plane 
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