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Predictive Control of Achilles Tendon Force During
Cyclic Motions in a Simulated Musculoskeletal

System With Parallel Actuation
Mahdi Nabipour , Gregory S. Sawicki , Member, IEEE, and Massimo Sartori , Member, IEEE

Abstract—Recent advancements in wearable exoskeletons for
human lower extremities have primarily focused on augmenting
walking capacity by either reducing metabolic costs or providing
joint torque support based on measured electromyography or
predicted joint torques. However, less attention has been given
to the use of robotic exoskeletons for controlling the mechanics
of specific biological tissues, such as elastic tendons. Achieving
closed-loop control over in-vivo musculotendon mechanics during
movement could revolutionize injury prevention and personal-
ized rehabilitation. Here, we introduce a framework utilizing
musculoskeletal modeling and nonlinear model predictive control
(NMPC) to close the loop around tendon force in a simulation
of cyclic force production of the human ankle plantarflexors
in parallel with a powered exoskeleton. The proposed frame-
work integrates a computationally efficient model comprising
explicit closed-form ordinary differential equations governing
musculotendon and ankle joint with parallel actuation dynamics.
The model’s computational time, in the microsecond range,
allows prediction of future states in real-time closed-loop control.
Compared to a predictive proportional-derivative controller, the
NMPC-based framework more effectively maintained Achilles
tendon force within a predetermined threshold across varying
levels of muscle excitation amplitude and frequency. Remarkably,
the NMPC framework demonstrates robustness to muscle exci-
tation variations during cyclic motions, making it suitable for
real-world applications.

Index Terms—Locomotion, walking, hopping, ankle plan-
tarflexors, Achilles tendon, musculotendon unit, hill-type muscle,
predictive force control, injury prevention, wearable robotics.
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I. INTRODUCTION

DEVELOPING wearable exosuits and exoskeleton tech-
nologies capable of providing closed-loop control over

musculotendon forces, especially during dynamic activities
such as walking and hopping, represent an open challenge.
Addressing this challenge has great potential to enable high-
precision assistive robots that can specifically support targeted
tissues, such as biological tendons. This would enable robotic
systems to control mechanical strains in a closed-loop manner,
reducing the risk of biological tissue injuries caused by
repetitive or high-impact activities. Additionally, such systems
could enhance the rehabilitation of targeted tissues and support
healthy aging. Currently, there are no robotic exoskeletons
capable of controlling in closed-loop the mechanical loads
acting on biological tendons across various locomotion tasks,
e.g., there is no robot that can ensure tendon forces never
exceed predefined upper boundaries, regardless of the mechan-
ical demand of the motor tasks such as external locomotion
speed, frequency, and loads.

Researchers have previously employed a range of control
techniques based on heuristics [1], optimization for energy
expenditure using human in the loop (HIL) [2], [3], [4], chem-
ical energy used by the muscle [5], walking speed [6], or user
preference [7]. Moreover, controllers have been designed using
real-time estimations of an individual’s joint moment to offer
support profiles that correspond with the subject’s tailored
musculoskeletal mechanics. These approaches encompass
proportional myoelectric control [8], real-time EMG-driven
model-based techniques [9], and deep neural network-based
proportionate joint moment control [10]. Notably, these con-
trollers operated at the joint moment level rather than within
the biological tissue level.

The researchers employed a force-controlled robotic device
to apply tissue stresses on mice, assessing the impact of
mechanical loads on muscle repair post-injury [11]. A few
studies enabled proportional assistance based on measured
Achilles tendon force profiles. In a recent study, the Achilles
tendon force was controlled using nine predefined plantarflex-
ion assistance profiles [12]. Nuckols et al. developed an
ankle torque profile for the wearer by utilizing ultrasound
measurements of soleus velocity during walking with the
aim of reducing metabolic cost. These measurements were
analyzed offline afterwards, in approximately 5 seconds to
process images and generate torque profiles. This processing
time is significantly less than the fastest HIL investigated by
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Slade et al. [13]. However, none of these studies explored
the possibility of closed-loop control of musculotendon loads,
such as Achilles tendon force.

Current state-of-the-art lower limb exoskeleton controllers
lack direct closed-loop control over biological tissue param-
eters, such as musculotendon unit (MTU) peak force. Our
research aims to fill this gap by developing a predictive-
based control framework that can steer tissue loading in
a targeted, assist-as-needed (AAN) manner, specifically to
control peak Achilles tendon force during cyclic motion. This
requires 1) the ability to predict how biological loads will
vary in the future in response to device assistance, and 2) a
predictive controller that discovers the optimal assistive torque
needed to influence the tendon force future trajectory. Here,
we developed a nonlinear model predictive control (NMPC)
approach that leverages the integrated human-exoskeleton
system as the core model and employs direct collocation to
solve the optimal control problem. This NMPC controller
operates by receiving feedback from the simulated muscu-
loskeletal system’s states and then optimizing the assistive
profile based on future predictions of tendon force. While
NMPC has previously been employed to generate optimal joint
trajectories [14] and assistive device joint torques [15], its
application to controlling musculotendon mechanics represents
a novel endeavor. This innovative approach shows potential
for achieving precise control over peak tendon force, enabling
the development of computationally efficient AAN control
strategies.

The model-based controllers such as NMPC require a model
of the MTU system. Widely adopted for modeling MTU
dynamics are Hill-type models, chosen for their efficiency
and fewer parameters compared to alternatives like Huxley’s
model of muscle contraction [16], [17]. The literature presents
several mathematical formulations that model Hill-type muscle
contraction and tendon strain mechanics. These formulations
utilize nonlinear splines to interpolate experimentally derived
data, capturing muscle force-length-velocity and tendon force-
strain relationships. However, existing formulations often rely
on conditional statements [18], [19], not leading to closed-
form equations. This reliance on conditional statements poses
challenges when integrating these formulations into control
theory frameworks and MPC schemes. The inner model
of NMPC ideally requires a closed-form equation, ensuring
computational efficiency for online implementation.

Limited research has focused on deriving closed-form equa-
tions for muscle contraction dynamics. Previous studies have
provided closed-form ordinary differential equations (ODEs)
for various conventional Hill-type muscle models [20]. While
van den Bogert et al. [21] introduced an implicit formulation
for the Hill-type muscle model, it was not in ODE form.
Building on this groundwork, De Groote et al. proposed both
computationally efficient implicit and explicit formulations for
estimating muscle forces during motion using direct colloca-
tion optimal control [22]. In the context of MPC schemes, it
is crucial for the formulation to be in a differential form to
facilitate future predictions through time integration, a feature
currently absent in the literature. The ODE formulations of the
existing conventional Hill-type muscle model [20] encounter
difficulties at low muscle activations due to the lack of

inherent damping in the Hill model, thereby restricting their
applicability in predictive control scenarios [22], [23]. In a
previous investigation, uni-variate linear regression was uti-
lized to derive a closed-form solution for the damped Hill-type
muscle model [24], [25]. However, the derived model lacked
generalizability across different gaits and muscle groups.

This paper presents three novel contributions:
• It introduces a closed-form ODE formulation for the Hill-

type muscle model, incorporating parallel damping.
• A state-space representation of a combined human and

exoskeleton model is proposed for MTU force control.
• Furthermore, a predictive framework is developed for

controlling MTU forces.
We first present an explicit, closed-form, and differentiable

set of equations for: 1) damped Hill-type muscle contraction
dynamics by linearizing the muscle force-velocity (F-V) curve,
and 2) motion dynamics of a simplified multi-body dynamic
system of the human leg actuated by a lumped model of the
triceps surae MTUs with a parallel artificial actuator (mimick-
ing the assistance of an ankle exoskeleton). These components
are integrated into an NMPC framework for the predictive and
adaptive control of peak tendon force during cyclic motions
with a focus on hopping in this research. To address computa-
tional time concerns of implicit methods and divergence issues
with explicit formulations, we propose an approach utilizing
the linearization of the damping-incorporated Hill-type muscle
model, as employed in our previously developed Calibrated
EMG-Informed Neuromusculoskeletal Modelling (CEINMS)
toolbox [26], [27], to enhance stability, accuracy, and gen-
eralizability of the closed-form contraction dynamics. The
resulting model is augmented with a human leg model actuated
by lumped MTUs and transformed into state-space form,
ideal for designing various controllers. This combined model
serves as the inner model for an NMPC algorithm, effectively
controlling Achilles tendon force during cyclic simulations.
This framework is applicable to controlling MTU forces in
the lower limbs during walking at various speeds [28], [29],
hopping with different frequencies, and can be extended to
address MTU forces in the trunk/upper limb [30].

II. METHODS

In this section, we provide the modeling and control of the
human-exoskeleton system in detail. We begin by describing
the modeling methodology that was developed in order to
create the closed-form model of the damped Hill-type muscle.
Next, we describe how this MTU model can be integrated with
a model of cyclic motion (e.g., hopping) and parallel exoskele-
ton assistance for controlling the musculotendon force.

A. Modeling the MTU Dynamics

We employ a Hill-type model with pennation angle
to describe the dynamics of musculotendon contrac-
tion [18], [31]. The conventional form of this model consists
of a contractile element in a combination of series and
parallel arrangements with elastic elements. When addressing
the presence of compliant tendons in Hill-type models, the
governing ODE takes the following form:

ḞT = kT(
L̇MT − L̇M cos(α) + LMα̇ sin α

)
(1)
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Fig. 1. Human-exoskeleton system in (a) experimental setup and (b) simulation environment. (c-e) Functions used for muscle-tendon force generation: (c)
Active and passive muscle force-length relationships, (d) tendon force-strain relationship, and (e) muscle force-velocity relationship. CEINMS model outputs
(dots) are approximated using nonlinear (NL) and linearized functions (dashed and solid lines).

where α denotes the pennation angle of the muscle. FT

represents the tendon force, kT the tendon stiffness, LM the
muscle fiber length, and LMT the MTU length. The MTU
parameters—specifically, the optimal fiber length and tendon
slack length—are determined as weighted averages across the
triceps surae muscles and extracted from CEINMS. In CEINMS,
the active and passive force-length (F-L) and F-V parameters
are modeled as cubic B-splines [19]. We employ the equations
outlined in [20] to describe the active and passive F-L elements
within the MTU contraction dynamics (Figure 1-c).

The series elastic element of the muscle fiber (SEE) is
mostly represented as stiffness, offering resistance to stretch-
ing. In CEINMS, the stiffness is derived as a mean from
diversely collected data, exhibiting a nonlinear relationship
with strain. To capture this nonlinear behavior, two approaches
were possible: a) approximate the tendon force-strain data
with regression, Figure 1-d), or b) approximated the stiffness,
modeled as splines in CEINMS, using a high-order polynomial
function, as used in [24].

1) Damped Hill-Type Muscle Model: The MTU length and
the pennation angle are directly determined through limb
kinematics [19]. However, muscle fiber length is computed by
integrating the inverse of the muscle’s F-V relation. Although
there is a closed-form solution for the ODE of this type of Hill-
type muscle model [20], but the model is unstable whenever
the activation approaches near zero. To tackle this challenge,
some proposed models integrate parallel damping within the
muscle fiber [23], [26], illustrated in Figure 1. The governing
equation of the damped Hill-type model is derived as:

FT

cos(α)
= FM

O

(
a(t)F̃M

L F̃M
V + F̃PE + F̃D)

. (2)

Here, FM
O , F̃M

L , F̃PE, and F̃M
V denote the maximum isometric

force, normalized active and passive force-length, and the
normalized F-V relation of the muscle. Also, a(t) signifies
muscle activation, calculated through first-order activation
dynamics [31], and F̃D represents the normalized viscous
damping determined as:

F̃D = b.
˙̃LM (3)

where the variable b represents the damping coefficient for the
damped hill-type muscle.

2) Linearizing F-V Relation: When considering the
damped Hill-type muscle model, deriving an analytical closed-
form solution is not feasible. To address this challenge
and obtain a closed-form solution for (1), we can leverage
the observation that during activities such as walking and
running, the normalized velocity of lower limb eccentric and
concentric contractions typically stays within the range of
±0.5 [23]. This simplification facilitates the streamlining of
the F-V relationship, making it possible to derive a closed-
form solution for the damped Hill-type muscle model. As
indicated in Figure 1, the F-V relationship employed in the
CEINMS toolbox appears almost linear within the normalized
velocity range of ±0.5. Consequently, we can approximate the
muscle’s nearly exponential behavior as linear in this specific
velocity range. Using this assumption we obtain:

FT

cos(α)
= FM

O .
(

a(t).F̃M
L (k1

˙̃LM + k2) + F̃PE + b.
˙̃LM

)
(4)

where k1 and k2 represent the parameters of the linear
approximation of the F-V relation within the range of ±0.5.
These values can be determined through regression, either by
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considering the entire active range of the muscle, the range
between ±0.5, or the specific region where we have prior
knowledge that the muscle will be active based on the given
task. In our simulations we assumed k1 = 2.2 and k2 = 1
which best matches the approximate nonlinear normalized F-V
relation for L̇M in the range of ±0.4. Using these assumptions,
the only unknown parameter of equation (1), L̇M , can be
obtained:

L̇M = Vmax

⎛

⎝
FT

cos(α)
− FPE − k2aFM

O F̃M
L

FM
O

(
k1aF̃M

L + b
)

⎞

⎠ (5)

B. NMPC Design for Tendon Force Control

The predictive controller framework comprises three major
components: a) tendon force predictor, b) desired force esti-
mator, c) NMPC algorithm. a combined model of the MTU
and a motion-related ODE is used as the inner model of the
NMPC and within the tendon force predictor.

1) Models Used for Control: In this paper, we investigated
how the coupled system of a human-exoskeleton device
responded to varying frequencies and magnitudes of muscle
excitation during a rhythmic movement (i.e., human hopping).
This motion heavily depends on the ankle MTUs, particularly
the triceps surae Achilles tendon complex, accounting for a
substantial portion (up to 80%) of the limb’s total positive
mechanical power to meet the mechanical work requirements
of the task. The closed-form ODE obtained for the tendon
force estimation, should be extended with another equation
that relates the tendon force to the movement. For example,
Robertson et al. [32], [33] proposed a simplified model of
the human leg to capture the salient features of rhythmic
locomotion. In their proposed model, they used a non-pennated
Hill-type muscle without parallel damping to represent the
triceps surae. This model is verified and valid for the cases that
the subject does not undergo deep knee bends. By introducing
a parallel actuator to this model, a combined exoskeleton-
MTU model is obtained (Figures 1-c and 1-d). The governing
equations for this model are as follows:

ḞT = kT(
L̇MT − L̇M cos(α) + LM sin(α)α̇

)
(6a)

L̈MT = − g

W

(
lin
lout

)2(
FT + Fac − W

lout

lin

)
(6b)

where L̈MT is the linear acceleration of the lumped MTU.
In this equation, the ratio lin/lout represent the inverse of
the mechanical advantage of the pulley-mass system shown
in Figure 1-b. Also, W and g are the portion of the body
weight carried by each leg’s lumped MTU and the gravitational
acceleration, respectively. The assistive actuator force, Fac, is
provided by the exoskeleton. The coupled equations above can
be expressed in the state-space form:

ẋ = f (x, u, a(t)), x = [
FT LMT L̇MT

]T
, u = Fac (7)

where the symbol T denotes the transpose operation. Since
the final equation is in state-space form, the derived combined
model is suitable for designing different linear and nonlinear
model-based controllers.

To derive the combined model of the human leg and the
wearable parallel assistive device, the mass was represented as
half of the body mass (35 kg) to approximate the loads expe-
rienced by each leg [33]. Moreover, the model incorporated a
maximum isometric force of 4000 N, which was derived from
the summation of the maximum isometric force of the triceps
surae muscle group. It also employed first-order activation
dynamics with activation and deactivation time constants of
0.091 and 0.015 seconds, respectively.

2) Optimization: The aim of the NMPC algorithm is to
minimize the following cost function while keeping the tendon
force under a predefined threshold:

J =
N∑

k=1

w1
(
Fac)2 + w2

(
�Fac)2 + w3

(
FT

k − FT
des

)2
(8)

where wi weight the contribution of tendon force, the actuator
force (Fac), and its increment (�Fac) on the value of the
cost function. This cost function is minimized over the entire
control horizon.

In this work, we assume that the muscle activation is pre-
known, which is considered valid, particularly in the context
of employing muscle synergies for cyclic motions. As a result,
we utilize this predetermined activation as input for both
the MTU model and the forward dynamics human motion
model integrated into the tendon force predictor and the inner
model of the control framework. Additionally, the interior-
point method is employed as the solver for conducting the
direct collocation optimization, with the dynamics enforced as
an equality constraint.

The initial control horizon is set to 150 ms, within which
the tendon force predictor (Figure 2) predicts the future tendon
force at time t (Figure 3). After estimating the predicted
tendon force, should the system detect a maximum value of
the tendon force surpassing the threshold (one of NMPC’s
constraints), it identifies the corresponding time of occurrence.
If the time of occurrence is less than 150 ms, it is designated
as the new control horizon, provided it is not lower than a pre-
selected minimum horizon of 100 ms [34]. For computational
cost purposes, similar to the zero-older hold (ZOH) method,
the controller output is computed every few steps. Therefore,
the control horizon determined within the given time frame is
subsequently divided by the value of the ZOH and rounded
the nearest integer less than or equal to that element.

Horizon (steps) =
⌊

Horizon (ms)

ZOH (ms)

⌋
(9)

In the event that the maximum predicted tendon force
exceeds the tendon force threshold, the controller is triggered,
and consequently, an estimated desired tendon force value
must be determined for the controller to track. Two strategies
are possible for deriving the desired tendon force. One method
involves setting the desired value equal to the threshold
whenever the predicted value surpasses the threshold, and
equal to the predicted value when it remains below the thresh-
old. Another approach, which exhibited greater robustness in
simulations, entails defining the desired tendon force such that
when the threshold is crossed during tendon force prediction,
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Fig. 2. Illustration of the predictive control framework for a human-exoskeleton system. (a) A closed-form model in state-space form emulates the coupled
dynamics. In practice, MTU length (LMT ) and muscle activation are estimated from the joint angles and the EMGs, respectively, using online NMS models
(e.g., CEINMS). (b) In simulations, LMT is derived from model dynamics (6b), and activation is either known or predicted via synergies. (c) Future MTU force
is predicted using forward dynamics ((6a) and (6b)) based on muscle activation over the horizon. (d) If tendon force exceeds the threshold, a desired force
is generated, capped at this threshold (Fig. 3). (e) For NMPC, current LMT and predicted activation are input into the inner model, with desired tendon force
incorporated into the cost function. (f) For predictive PD control, the next step of the desired MTU force and its derivative are supplied, and the controller
output updates the coupled system dynamics.

the maximum desired tendon force is set to match the threshold
value at the same instance the maximum tendon force is
predicted to happen. Subsequently, the remaining values before
the maximum are linearly scaled down to construct the
complete desired tendon force profile as:

FT
pred,des = FT

k + FT
thresh − FT

k

FT
max − FT

k

(
FT

fut − FT
k

)
(10)

where FT
thresh represents the tendon force threshold, FT

max is
the maximum predicted tendon force over the control horizon,
and FT

fut is the predicted tendon force over the control horizon.
Note that the bold parameters in the equation are vectors. The
values following the occurrence of the maximum are set to be
equal to the threshold value (Figure 3).

C. Validation Procedures

To evaluate the effectiveness of the control structure, the
performance of the NMPC approach was compared with both
constrained and non-constrained predictive PD algorithms.
Following this comparison, a sensitivity analysis of the NMPC
approach was conducted.

1) Control Approach: In the initial set of simulations, the
performance of the NMPC controller was benchmarked against

Fig. 3. Estimation of the desired future MTU force based on the predicted
MTU force within the predictive framework.

that of a predictive PD controller. For this comparison, the
NMPC component (Figure 2-e) within the control structure
was substituted with a PD controller (Figure 2-f). This PD
controller was defined by gains of Kp = 0.5 and Kd = 0.05,
which were fine-tuned through trial and error. The aim was
to consistently maintain the tendon force below the threshold
while also ensuring it remained in close proximity to the
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threshold value. The predictive PD controller was once operat-
ing without and once subjected to the same constraints as the
NMPC. For both NMPC and predictive PD, the controllers’
objective is to keep the Achilles tendon force under 3000 N.
Also, the sensitivity of the NMPC controller was investigated
with respect to variations in activation and the subject’s weight.

2) Sensitivity Analysis: In order to examine the sensitivity
of the controller to the muscle excitation, the muscle excitation
that is used in the control framework (in the tendon force
predictor and NMPC inner model) is perturbed according to:

εcont
k=1,...,hor = (

1 + dε
)
εk=1,...,hor (11)

where dε is the disturbances value which is the muscle
excitation supplied to the human-exoskeleton combined model.
εk=1,...,hor represent the muscle excitation supplied to the
human-exoskeleton combined model (green and red dotted
lines in Figure 7-b, and εcont

k=1,...,hor is the muscle excitation
supplied into the tendon force predictor and NMPC con-
troller’s inner model (black dotted line in Figure 7-b). This
excitation is then converted into muscle activation (solid lines
in Figure 7-b) using first-order activation dynamics.

The controller’s estimation of the subject’s weight can be
affected by two primary scenarios: a) when the subject alters
their weight, for example, by adding or removing load from
a backpack; and b) unforeseen variations in the center of
pressure (CoP). Although CoP typically concentrates around
the metatarsophalangeal joints during hopping (also true for
late-stance walking), a specific optimal point for the CoP can
be identified for estimating lout in Figure 1. It’s worth noting
that in practical scenarios of hopping and walking, slight
variations in the CoP position may occur. These variations
in CoP can impact the lout/lmin ratio, consequently affecting
the load carried by the parallel lumped muscle-exoskeleton
complex model. Therefore, the maximum tendon force in each
period of hopping can be evaluated by changing the felt load
on the muscle according to:

Whum = (
1 + dw)

Wcont (12)

where Whum and Wcont are the weights that are supplied into
the human-exoskeleton combined model and the controller,
respectively and dw represents the disturbance value. in this
case, the controller isn’t aware of the change made in the
weight of the subject but the subject undergoes the different
weights in the model.

To further validate the framework’s robustness, we con-
ducted complementary work (detailed in [35]) examining
how the choice of linearized F-V slope impacts controller
performance when applied to different muscle fiber types, with
fast- and slow-twitch specific adaptations.”

III. RESULTS

A. Modeling and Validation

Simulating the muscle contraction dynamics using the
data collected during plantarflexion and dorsiflexion on the
dynamometer [36], shows that the model presented in [24]
becomes unstable whenever the activation is close to zero.

Fig. 4. Comparison of tendon force predictions using the CEINMS model
(dashed red) and a Hill-type muscle model with parallel damping and
a linearized force-velocity (F-V) relationship (solid blue). Panels (a) and
(b) show the soleus (SOL) muscle under walking (2.7 km/h) and running
(8.1 km/h) conditions, respectively [37]. Panels (c) and (d) present the lateral
(LatGas) and medial (MedGas) gastrocnemius muscles during dorsiflexion
and plantarflexion on a dynamometer [36].

To evaluate the precision of the MTU modeling method, the
estimated MTU force of the model for the plantarflexor mus-
cles has been examined over a wide range of movement speeds
and frequencies, including walking and running [37], along
with dorsiflexion and plantarflexion on a dynamometer [36].
To prevent redundancy, a representative condition for each task
has been illustrated: 2.7 km/h for walking involving the Soleus
muscle, 8.1 km/h for running involving the Soleus muscle,
and the muscle forces of the Medial Gastrocnemius and
Lateral Gastrocnemius while the subject followed sinusoidal
position targets with an amplitude of 0.15 rad at 0.6 Hz on the
dynamometer are presented in Figure 4. The normalized root
mean square error (NRMSE) and the correlation coefficient
(R2) between the linearized model and the values estimated
by the CEINMS toolbox for dorsiflexion/plantarflexion data of
the lateral and medial Gastrocnemius are computed as 7.7%
(with R2 = 0.966) and 5.2% (R2 = 0.937), respectively.
Additionally, for gait data collected at different speeds, the
NRMSE values are 5.2% (with R2 = 0.982) for walking
at 2.7 km/h and 5.7% (with R2 = 0.98) for running at
8.1 km/h. Note that the plots for the lateral and medial
Gastrocnemius represent averages over multiple periods of
sinusoidal movement.

B. Control

The investigation into the computational time required for
the NMPC involved testing various ZOH values. It was
found that a system with 16 GB of RAM and an Intel
Core i7-11800H @ 2.30GHz processor could complete each
optimization iteration in MATLAB software within 14 ms
when using a ZOH of 10. The interior-point optimizer was set
to a maximum of two iterations to reach the optimal solution.
This timeframe falls within the range of the physiological
electromechanical delay [38].
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Fig. 5. The peak MTU force values (in Newtons) (a) without assistance as a function of muscle excitation period (x-axis) and amplitude (y-axis). The values
of the contours represent the maximum tendon forces (in N) for each muscle excitation period and amplitude. Performance of (b) NMPC, (c) non-constrained,
and (d) constrained predictive PD in maintaining the peak MTU force below the threshold of 3000 N. The red dashed lines indicate instances where the
tendon force predictor recognizes a surpassing of the threshold within the control horizon, thereby activating the controller.

For the purpose of comparing both NMPC and predictive
PD, the muscle undergoes excitations ranging from 0.05 to 1
with increments of 0.05. Additionally, the period experiences
various values, ranging from 250 ms (corresponding to a
frequency of 4 Hz) to 1000 ms (corresponding to a frequency
of 1 Hz), with increments of 50 ms.

Figure 5 illustrates the effectiveness of both NMPC and
(non)constrained predictive PD in maintaining the tendon force
below the predefined 3000 N threshold. The contour plots
depict the maximum tendon force values at each period and
amplitude of muscle excitation. In these plots, the x-axis
represents the period in milliseconds, and the y-axis represents
the amplitudes of muscle excitation. When the user undergoes
different excitation periods and amplitudes without receiving
any assistance, the maximum tendon force is plotted in
Figure 5-a. The parts of the figure which are in green, are the
parts that the Achilles tendon force is maintained under 3000 .

The peak tendon force exceeds the threshold when no
support is provided by the parallel assistive device, particularly
during periods of high excitation amplitude. This trend is also

TABLE I
MAXIMUM, MEDIAN, AND STD OF PEAK MTU FORCES IN EVERY HOP

UNDER DIFFERENT CONTROLLERS

observed in the assistive force generated by the constrained
PD controller. In the case of NMPC, the maximum tendon
force achieved is characterized by a peak value of almost
3002.4 N, a median of 2993.7 N, a standard deviation (STD)
of 57.3 N, and a NRMSE of 2%. However, for the non-
constrained predictive PD controller, these values shift slightly
to 3001.8 N (maximum), 2989 N (median), 55.2 N (STD), and
2.1% (NRMSE). In the case of the constrained PD controller,
these values were 4179 N (maximum), 2995.8 N (median),
258.6 N (STD), and 9.1% (NRMSE). These statistics are
presented in Table I for clarity. The control profiles generated
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Fig. 6. Comparison of NMPC and Predictive PD control performance in controlling MTU force below 3000 N threshold. The visualizations from top to
bottom include muscle excitation and activation for various excitation amplitudes during hopping with a period of 400 ms (2.5 Hz), MTU force with and
without assistance, and exoskeleton actuation in both NMPC and Predictive PD control scenarios.

TABLE II
IMPACT OF MUSCLE EXCITATION AMPLITUDE UNCERTAINTY ON THE

MEDIAN, STD, AND NRMSE OF PEAK MTU FORCES DURING EACH

HOP UNDER NMPC CONTROL

by both NMPC and constrained PD controllers under different
activation levels are illustrated in Figure 6.

1) Sensitivity of NMPC to Muscle Excitation: To examine
the sensitivity of the controller to activation, instead of
inputting the actual future activation into the tendon force
predictor (Figure 7-a) and the controller’s inner model, a
perturbed vector of the future activation (Figure 7-b) was
utilized. The perturbation added to the muscle excitation is
changed between −0.2 to +0.2 with the increment of 0.1.
Figure 7-c shows the controller’s performance in response to
the different values of disturbance in the excitation.

When the uncertainty in the muscle excitation is +10%, the
maximum tendon force achieved is characterized by a median
of 2790 N, STD of 14.5 N, and a NRMSE of 7% when
compared with the 3000 N threshold. For +20% uncertainties,
these values change into a median of 2609 N, STD of 21.9 N,
and a NRMSE of 12.7%. Conversely, when the uncertainty
decreases by -10% and -20%, the median/STD/NRMSE values
increase to 3219/3471 N, 68.5/166 N, and 6.7/14%, respec-
tively. All these statistics (Table II) correspond to the values
at which the MTU force would have exceeded the threshold
if assistance had not been provided.

2) Sensitivity of NMPC to the Weight: Figure 7-b illustrates
the controller’s performance under non-assisted and assisted
conditions as the disturbance values vary from -40% to +40%.
In the absence of assistance, the maximum MTU force reaches
4320N under the highest excitation level. With a 40% decrease
in subject weight, the maximum MTU force without assistance
decreases to 3616N. If the predictive control framework is
unaware of this weight change, potentially due to a variation
in the subject’s backpack load, the controller limits the peak
MTU force to 2345N, although the threshold should have
remained at 3000N. The maximum MTU load with a 20%
decrease in activation amplitude remains below 2722N. Also,
with a 20% and 40% increase in subject weight, the maximum
MTU force rises to 3163 N and 3247 N, respectively.

IV. DISCUSSIONS

We presented a framework for the predictive closed-loop
control of peak Achilles tendon force during cyclic motions in
a simulated musculoskeletal ankle joint system with parallel
actuation. We introduced a closed-form formulation for the
modified Hill-type muscle model and derived explicit closed-
form equations for simulating cyclic motions of the combined
human-exoskeleton system.

A. Modeling

In a previous study, we introduced a uni-variate linear
regression method to find a curve function for estimating L̇M

instead of using equation (5) [24]. The method proposed for
linearizing the force-velocity relation in this paper eliminates
the necessity for individual muscle optimization, present-
ing a significant advantage over the regression technique.
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Fig. 7. Examination of the NMPC controller’s sensitivity to variations in muscle excitation amplitudes and user weight, assuming a standard user weight of
70 kg (35 kg per leg) with consistent muscle excitation patterns. (a) Muscle excitation ranges from 0.05 to 1 in 0.05 increments. (b) Perturbations in muscle
excitation are simulated, where the controller’s perceived excitation (black dashed line) differs from actual excitation (green for higher, red for lower). (c)
Sensitivity analysis shows peak forces with reduced excitation (red/orange triangles) or increased by 10% and 20% (light/dark green triangles). (d) Peak MTU
forces under varying user weights are analyzed, e.g., “N.A. +40%” indicates no assistance with a 40% weight increase unknown to the controller.

Notably, results illustrated that the proposed model exhibited
generalization capabilities across different muscle activation
dynamics, while capturing the desired muscle-tendon behavior
at various speeds and frequencies of representative cyclic
motions (Figure 4). Moreover, the incorporation of damping
in the Hill-type muscle model enhanced model stability, i.e.,
the muscle-tendon unit did not diverge as muscle activation
approached zero. This stability contrasts with scenarios where
damping is not utilized [25] or when employing the regression
method [24].

As depicted in Figure 4, the model demonstrated accuracy
(6.2% error in average) in estimating peak MTU forces when
compared to reference profiles. Moreover, the computational
costs associated with the full set of equations, compris-
ing of muscle-tendon dynamics and the equation of motion
for the human leg with parallel exoskeleton actuation, was
substantially low, 3μs per iteration. This underscores the com-
putational feasibility of the proposed methodology being more
than 100 times faster than the computational speed available
in established modelling frameworks such as our previously
developed CEINMS toolbox. This fast computational time
renders the model suitable for real-time exoskeleton control
applications.

B. Control

When employing the predictive PD controller without con-
straints, maintaining the tendon force below the threshold
posed significant challenges. Although the predictive PD with-
out any constraints on the actuation of the actuator could keep
the tendon force under the threshold, it required an actuation
force of 8150 N (as depicted in Figure S-1-c supplementary
material) to achieve this, which is impractical in reality.

In the context of the constrained predictive PD controller,
the controller encountered difficulties in keeping the tendon
force below the designated threshold, especially when high
muscle excitation amplitudes and elevated hopping frequencies
coincided. As illustrated in Figure S-1-b, the constrained PD
controller becomes active within similar time frames as the
unconstrained version. However, the constrained version fell
short of reaching the actuator limit in time to fully utilize
the actuator’s capacity. The observed discrepancy arises from
the controller’s reliance on errors from the following time
instant despite having advanced knowledge of future MTU
force through the output of the tendon force predictor and
desired force estimator. This operational method contrasts
with the NMPC controller’s utilization of the entire control
horizon. Furthermore, the behavior of the predictive PD con-
troller varies significantly across different hopping excitation
frequencies and amplitudes, with its performance heavily
reliant on the tuning of the Kp and Kd gains. Therefore, better
results might be achieved by designing an adaptive predictive
PD controller.

The proposed NMPC-based approach offers significant
advantages in controlling MTU force, e.g., Achilles tendon
force. By accurately predicting future instances where the
tendon force might exceed the permissible limit, the con-
troller adjusts its actuation values preemptively. This approach
successfully prevented the tendon force from surpassing the
allowed threshold while maintaining it within a narrow range
near the limit (median = 2993.7 N and STD = 57.3 N).
As a result, the system provided improved control, enhanced
stability, and greater user comfort. This effectiveness is further
illustrated in Figure 5-b, which shows that during most periods
of controller activity, the peak MTU force remained between
2950 N and 3000 N. Consequently, not only does it avoid
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instantaneous force generation, as observed in the uncon-
strained predictive PD, but also regulates the control effort
over time to prevent increments from crossing the allowed
threshold. Also, as depicted in Figure S-1-a, it is evident
that the actuator force only approached the limit (without
surpassing it) when the hopping excitation and frequency are
high. This behavior can be attributed to the influence of the
cost function, 8, on the actuator force (Fac), wherein the
actuator force directly impacts the energy consumption of the
actuator. Furthermore, the findings indicated that the control
outputs demonstrated nearly linear growth when w1 � w2
in the cost function. Increasing the weight w2 would prompt
the assistance profile to initiate earlier and increase more
gradually.

As depicted in Figure 5-a, the worst-case scenario occurred
when the muscle was highly excited and the hopping frequency
was moderate or high. This observation is particularly intrigu-
ing and presents a potential avenue for further investigation
in this study. It suggests that the natural frequency of the
human plantarflexor system, in the absence of the exoskeleton,
during hopping converges around this specific range. This
finding aligns, to some extent, with the results of [39], which
analyzed the frequencies of various animals and humans with
different weights during walking and hopping. The discrep-
ancy between the natural frequencies reported in this study and
those in [39] may be attributed to the damping incorporated
into the Hill-type muscle model used here. When examining
this hypothesis, it is important to consider that the natural
frequency can be influenced by the stiffness of the MTU [40].
As previously noted, the tendon stiffness in our model exhibits
nonlinear behavior. During the simulation, the average stiffness
of the Achilles tendon was approximately 420, 000 N/m.
Furthermore, the average stiffness of the passive force element
in the Hill-type muscle model was around 22, 500 N/m. Due to
the pulley system, the effective loading of the weight must be
accounted for by tripling its impact, resulting in an equivalent
weight of 1.5 times the body weight per leg.

1) Sensitivity Analysis: Figure 7-a shows the performance
of the controller in response to the uncertainty in the excitation.
As shown, although the controller was not successful in
keeping the tendon force under the prespecified threshold, it
can keep it close to the threshold when the uncertainty was
not higher than 10%. In other words, knowing the amplitude
of the activation seems relevant. As depicted in Figure 7-a,
when the excitation disturbance is positive (the controller is
not aware of the increase in muscle excitation amplitude),
the controller kept the tendon force below the threshold.
This occurred because the controller anticipated surpassing the
threshold sooner than reality, leading to premature engagement
of the controller. Conversely, when the disturbance is negative,
the controller maintains the tendon force at values exceeding
the threshold. This discrepancy arised from the controller’s
misjudgment in detecting the surpassing of the threshold.
Despite the actual threshold crossing, the controller perceived
itself to be in the region below the threshold, thus failing to
activate the actuator on time. To overcome this challenge, it is
advantageous to predict the muscle excitation pattern within
the control horizon.

When the subject’s weight (or the center of pressure,
CoP) changed without the controller’s awareness, its behavior
differed significantly from situations where the weight was
accurately known. As shown in Figure 7-b, perceiving a
higher weight for the subject caused the actuator to activate
prematurely. This occurred because the controller, unaware
of the subject’s weight relief (or CoP change), assumed a
larger acceleration due to the reduced weight. This led to
a miscalculation, with the controller incorrectly predicting a
rapid increase in tendon force.

On the other hand, when the subject’s actual weight
exceeded the weight assumed by the controller, the actuator’s
activation was delayed. This delay resulted from the tendon
force predictor failing to identify the threshold crossing in
time. However, in this case, the peak MTU force remained
closer to the threshold because the NMPC received feedback
from the system. Unlike open-loop controllers or predefined
assistance profiles, the NMPC adjusted its output dynamically
upon detecting that the tendon force had surpassed the thresh-
old. This reactive adjustment did not occur in scenarios where
the controller overestimated the subject’s weight.

C. Limitations of Current Study and Future Works

The proposed predictive framework implemented tendon
force feedback control within a low computational time of less
than 14 ms, rendering it suitable for real-world applications.
The MTU parameters, including maximum isometric force,
optimal fiber length, and tendon slack length are personalized
and obtained by a calibration phase, similar to the proce-
dure that is done to calibrate the MTU model in CEINMS
toolbox [26], [27]. In our analysis, we assumed pre-known
muscle excitation/activation patterns. However, as demon-
strated in the sensitivity analysis, the framework exhibited
some sensitivity to muscle activation. To enhance the practical
applicability of this control framework, a key strategy involves
integrating a muscle activation predictor into the algorithm.
An initial step towards this integration could be achieved
by leveraging muscle synergies, as discussed in [30], [41].
However, muscular activation can be influenced by external
perturbations, such as those from exosuit support, as well as
changes in movement tasks. Therefore, a more robust approach
would entail predicting muscular activation in the presence of
exosuit assistance. The incorporation of a muscle activation
predictor is expected to improve the framework’s adaptability
and resilience in real-world scenarios.

An additional notable finding from the sensitivity analysis
conducted in the research paper was the framework’s sensitiv-
ity to its estimation of user weight. While this sensitivity isn’t
a significant concern during controlled laboratory experiments
due to the personalized models employed in the predictive
control framework, it could pose challenges in real-world
applications. One way to interpret the impact of changes in
user weight is to view them as shifts in the COP concerning
the controller’s anticipated COP position, which is often near
the metatarsal joint during late-stance or hopping activities.
This interpretation underscores the importance of integrating
the COP into the inner model of the NMPC algorithm before
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extending this work to more sophisticated cyclic motions such
as walking and running.

As a future direction, the framework will be extended
for real-time control of exoskeletons. This extension aims to
bridge the gap between simulation-based validation and prac-
tical implementation, enabling the system to handle dynamic
and unstructured environments using AI-based muscle acti-
vation or MTU force predictors. Real-time implementation
will require addressing key challenges such as hardware
constraints, computational efficiency, and robust sensor inte-
gration. Additionally, rather than estimating the current MTU
length and load using the model (Fig. 2-a), these parameters
will be directly acquired using sEMG and IMU sensors.
This sensor-driven approach will enhance the accuracy and
adaptability of the framework, making it more suitable for
applications in assistive robotics and rehabilitation systems.

V. CONCLUSION

In conclusion, this paper introduces a framework for the
closed-loop control of peak tendon force in a simulated
human ankle joint system with parallel exoskeleton actuation.
By employing NMPC in conjunction with a computationally
efficient inner model governed by explicit, closed-form ODEs,
we make a substantial stride in filling the existing gap in
the control of biological tissue mechanics within the realm of
robotic exoskeletons for controlling the peak tendon force.

Our approach integrates differentiable equations for a Hill-
type MTU system with parallel damping and the equation of
motion for a human leg with parallel exoskeleton actuation,
encapsulated within the NMPC framework for the first time.
The outcomes highlight the effectiveness of our proposed con-
trol framework, successfully maintaining tendon force below a
predetermined threshold across diverse simulated conditions,
including hopping with varying muscle excitation amplitudes
and frequencies.

Looking ahead, the framework will be further developed
for real-time application in exoskeleton control. The focus
will be on addressing key challenges associated with real-time
implementation, such as ensuring computational efficiency
and enhancing adaptability to individual differences. These
advancements will pave the way for broader adoption of
the framework in clinical and industrial settings, enabling its
application in assistive and rehabilitative technologies.
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