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Abstract
Center of mass (COM) state, specifically in a local reference frame (i.e., relative to center of pressure), is an important 
variable for controlling and quantifying bipedal locomotion. However, this metric is not easily attainable in real time dur-
ing human locomotion experiments. This information could be valuable when controlling wearable robotic exoskeletons, 
specifically for stability augmentation where knowledge of COM state could enable step placement planners similar to 
bipedal robots. Here, we explored the ability of simulated wearable sensor-driven models to rapidly estimate COM state 
during steady state and perturbed walking, spanning delayed estimates (i.e., estimating past state) to anticipated estimates 
(i.e., estimating future state). We used various simulated inertial measurement unit (IMU) sensor configurations typically 
found on lower limb exoskeletons and a temporal convolutional network (TCN) model throughout this analysis. We found 
comparable COM estimation capabilities across hip, knee, and ankle exoskeleton sensor configurations, where device type 
did not significantly influence error. We also found that anticipating COM state during perturbations induced a significant 
increase in error proportional to anticipation time. Delaying COM state estimates significantly increased accuracy for veloc-
ity estimates but not position estimates. All tested conditions resulted in models with R2 > 0.85, with a majority resulting 
in R2 > 0.95, emphasizing the viability of this approach. Broadly, this preliminary work using simulated IMUs supports the 
efficacy of wearable sensor-driven deep learning approaches to provide real-time COM state estimates for lower limb exo-
skeleton control or other wearable sensor-based applications, such as mobile data collection or use in real-time biofeedback.

Keywords Center of mass state · Human intent recognition · Exoskeletons · Machine learning · Locomotion

Introduction

Center of mass (COM) state is central to quantifying and 
controlling bipedal locomotion, where it is frequently 
used to inform step placement and quantify stability [1–3]. 
Bipedal robots benefit from knowledge of joint kinematics 

and segment properties, enabling accurate, real-time quan-
tification of COM mechanics relative to the ground contact 
point. However, this is not so easily achievable in humans, 
where knowledge of participant-specific segment properties 
is unknown and joint encoders or goniometers are not nec-
essarily available during biomechanics or wearable robotic 
experiments to provide lower limb kinematics. Previous 
studies have investigated wearable sensor-based methods for 
global COM state estimation, providing information such 
as walking speed and direction [4]. However, estimating 
COM state in a local frame, relative to the center of pres-
sure (COP), would be more influential for understanding 
biomechanical stability by indicating COM mechanics rela-
tive to the ground contact point. Thus, real-time estimation 
of a human’s COM state in a local frame could inform new 
approaches for wearable robotic exoskeleton control archi-
tectures, or other use cases such as mobile data collection or 
real-time biofeedback.
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Specifically, knowledge of COM state during perturbed 
locomotion could enable the autonomous deployment of 
stability-augmenting wearable robots. Previous studies in 
this area have used COM state to detect environmental per-
turbations and inform exoskeleton assistance profiles, but 
have relied on simple models or motion capture to quantify 
COM mechanics, which confines use cases to in-lab collec-
tions [5–7]. Employing machine learning models that use 
wearable sensors could overcome this limitation by provid-
ing mobile and real-time COM state estimates. Estimating 
the current state in time (i.e., zero-lag estimation) may not 
be the only possibility, as recent work has also shown that 
machine learning or other data-driven methods may enable 
estimates of future human states (i.e., anticipated estimation) 
[8–12]. These estimates could enable wearable robots that 
anticipate changes to human locomotion, rather than simply 
react to them.

However, COM state estimation during perturbed 
locomotion, the target for balance-augmenting wearable 
robots, is likely more challenging. These discrete and sud-
den changes to COM mechanics are likely more difficult 
for machine learning models to estimate, in comparison to 
steady state cyclic signals, because input sensor data win-
dows may contain some pre-perturbation steady data and 
output labels are more transient, diverse, and may be less 
represented in the data set. Additionally, anticipated estima-
tion compounds the challenge associated with this applica-
tion, as wearable sensor input data will be less representative 
of perturbed mechanics. This is because machine learning 
models typically use some window of input sensor data to 
estimate a label; in anticipated estimation instances where 
the window ends right before the perturbation and the 
anticipated data point occurs shortly after the perturbation, 
it may be challenging for the model to accurately estimate 
this point. However, recent advancements in human intent 
recognition using lower limb sensors are showing increased 
robustness across various modes of locomotion that suggest 
perturbed state estimation could be possible [13, 14].

Machine learning models using wearable sensors have 
shown significant promise in being able to estimate and pre-
dict human intent, especially from a reduced set of sensors 
[15, 16]. Specifically, deep learning models, such as tem-
poral convolutional networks (TCN), have shown robust-
ness in estimating continuous human states across various 
modes of locomotion [9, 13]. Previous work suggests that 
TCN models may outperform other deep learning methods, 
such as Long Short-Term Memory (LSTM) or Convolu-
tional Neural Network (CNN) models, for wearable sensor-
driven human state estimation [13]. The TCN architecture 
maintains the temporal order of input data and is relatively 
light-weight in terms of trainable parameters compared to a 
CNN. This reduced weight requires less data to sufficiently 
train the network, which is particularly appealing for human 

biomechanics applications in which data acquisition is time 
intensive. Thus, a TCN is a promising approach to investi-
gate how well wearable sensor-informed data-driven models 
can estimate COM state during perturbed locomotion.

In this work, our broad goal was to investigate the abil-
ity of a wearable sensor-driven approach to estimate COM 
state during steady state and perturbed walking. We also 
evaluated how forward (anticipated) and backward (delayed) 
estimation influenced model accuracy, as anticipated estima-
tion could enable more responsive exoskeleton controllers 
while delayed estimation could provide estimates with lower 
error at the expense of some delay [9]. To compare vari-
ous exoskeleton sensor configurations, we simulated inertial 
measurement unit (IMU) sensors on the torso, pelvis, and 
lower limbs from a perturbed walking biomechanics data 
set. We quantified COM state as the mediolateral (ML) and 
anteroposterior (AP) COM position and velocity relative 
to the center of pressure (COP), shown in Fig. 1. First, we 
investigated the estimation capability of models that use only 
an inertial measurement unit (IMU) on the pelvis as well as 
sensor configurations that would be found on various lower 
limb robotic exoskeletons that combine multiple sensors. 
Next, we evaluated the delayed and anticipated estimation 
capability of a candidate exoskeleton sensor configuration. 
Lastly, we evaluated how various environmental perturba-
tion conditions (magnitude, direction, and timing) influenced 
estimation accuracy. This work provides insight into the effi-
cacy of COM estimation using wearable sensors for use in 
wearable robotic control during unstable locomotion.

Materials and Methods

Data Collection

All participants provided written informed consent for this 
study approved by the Georgia Institute of Technology 
Institutional Review Board. Eleven participants walked on 
a treadmill mounted in a six degree-of-freedom Stewart plat-
form (CAREN, Motek Medical, Netherlands) [17]. Through-
out the experiment, participants walked at 1.25 m/s. Partici-
pants were perturbed using surface translations that varied in 
magnitude (5, 10, 15 cm), direction (ML, AP, corresponding 
four diagonal combinations), and onset time (double stance; 
early, mid, late single stance), resulting in 96 unique con-
ditions (Fig. 1). One perturbation occurred approximately 
every 20 s, with the exact time being randomized to inhibit 
participant anticipation of the perturbation. The foot that the 
perturbation was applied on was also randomized to inhibit 
anticipation. Each participant walked for three sessions, 
resulting in three repetitions of each perturbation condition 
for a total of 288 perturbation trials per participant.
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We collected a full-body marker set and five markers on 
the platform at 100 Hz, as well as bilateral ground reac-
tion forces from the split-belt treadmill at 2000 Hz (Vicon, 
Oxford, United Kingdom). We collected readings from four 
tri-axial accelerometers (Model 4030, ± 2 G dynamic range, 
TE Connectivity, Switzerland) mounted on the Stewart plat-
form at 2000 Hz for inertial compensation, which is dis-
cussed in the next section.

Calculation of COM State Relative to COP

Due to the large inertia of the system, acceleration of the 
platform induced forces and moments on the force plates 
that needed to be corrected to obtain the forces and moments 
caused by the participant. We adapted and applied a previ-
ously published method that used platform-mounted accel-
erometers to identify and correct for induced forces and 
moments [18]. We used these corrected outputs to recalcu-
late the COP and corrected the COP to accurately reflect the 
translation of the force plates with the platform relative to 
the global coordinate frame.

The motion capture marker data were lowpass filtered at 
6 Hz using a fourth-order Butterworth filter. The COM was 
approximated by the mean of the four pelvis markers. We 
then calculated the ML and AP position and velocity relative 
to the combined COP from both force plates, providing con-
tinuous position and velocity measures throughout the gait 
cycle (Fig. 1). Across the 3168 collected perturbation trials, 
27 resulted in a jump in response to the perturbation, defined 
by an aerial phase in the period after the perturbation onset. 
Because this results in a period of no center of pressure 
due to lack of ground contact, these trials were eliminated 
from the data set used in this work. The remaining 3141 
perturbation trials were used in this analysis. The ML and 

AP position and velocity COM states were used as the data 
labels for the machine learning models.

Inverse Kinematics and Simulated IMU Generation

From the collected biomechanics data set, we calculated 
simulated IMU sensor signals to represent the IMU set that 
would be found on a hip, knee, or ankle exoskeleton. We uti-
lized simulated IMUs for this work because we did not have 
the ability to collect the entire set of physical IMUs required 
for this analysis. Utilizing simulated sensors allowed us to 
capitalize on this large and diversely perturbed data set while 
also allowing us to analyze a number of different sensor 
configurations that we believe would be informative for the 
wearable robotics and biomechanics communities. We cal-
culated inverse kinematics using OpenSim 4.1 [19]. We used 
the OpenSim Scale Tool to scale a full-body musculoskeletal 
model to each participant [20]. We then used the OpenSim 
Inverse Kinematics Tool to obtain full-body joint kinemat-
ics. The resulting segment kinematics were then used to 
simulate linear acceleration and angular velocity recordings 
for mid-segment-mounted sensors on the torso, pelvis, thigh, 
shank, and foot segments according to the protocol in [13]. 
This set of simulated IMUs was used as the inputs for the 
machine learning models.

TCN Model Structure

We implemented a subject-independent TCN model that was 
previously found to outperform other deep learning models 
when estimating human outcomes during locomotion [13]. 
We altered the model to include a four-headed output to ena-
ble the estimation of ML and AP COM position and velocity 
with a single model. The model was split into four heads 
after the fully connected layer. All model hyperparameters 

Fig. 1  Perturbations varied in magnitude (left, shown by colored 
arrows), direction (left, shown by colored arrow outlines), and tim-
ing (top walking diagram). Center of mass (COM) state was defined 
using the mediolateral (ML) and anteroposterior (AP) position and 

velocity vectors between the COM and continuous center of pressure 
(COP) spanning both feet, representing the COM in a local reference 
frame defined by the point of ground contact
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were set as the optimal hyperparameters determined in [13], 
which investigated the capability of a comparable sensor 
set to estimate biomechanical outcomes during multimodal 
locomotion. The kernel size and levels hyperparameters dic-
tate the required input data time history for a TCN model. 
The optimized hyperparameters in [13] require 187 points 
of time history, or 930 ms, based on the 200 Hz collection 
frequency used in the study.

TCN Model Training and Testing Data

All collected perturbation trials, with the exception of the 
27 eliminated trials discussed above, were used to provide 
the training and testing data for these analyses. All sensor 
and COM state data were upsampled from 100 to 200 Hz to 
replicate the collection frequency used in the study that pro-
vided the TCN hyperparameters used in this work [13]. For 
each perturbation trial, COM state labels were included for 
2.95 s before and 6.05 s after the perturbation; this ensured 
the same labels were being estimated across delayed and 
anticipated estimation times, in which the sensor inputs win-
dow shifted relative to the COM state time point being esti-
mated. We determined the across-participant mean steady 
state range of ML and AP position and velocity. These range 
values were 224 mm, 361 mm, 2956 mm/s, and 4126 mm/s 
for the ML position, AP position, ML velocity, and AP 
velocity, respectively. These across-participant means were 
used to scale all data labels, resulting in steady state signals 
with approximately the same range across all labels. These 
resulting labels are in units of percent of steady state range. 
We did this to prevent the multi-headed network from being 
biased toward outcome measures with larger ranges, and 
therefore larger error values for comparable error as a per-
centage of the steady state signal, during model training. 
Several perturbations in the data set regularly caused COM 
state deviations up to and surpassing 25% of the steady state 
range; thus, the model would need to achieve error values 
significantly below this to provide utility over a baseline 
approach of assuming steady state gait. We extracted input 
and label data for 50, 100, and 150 ms anticipated estima-
tions (label was ahead in time from the last sensor input), 
50, 100, and 150 ms delayed estimations (label was behind 
in time from the last sensor input), and zero-lag estimation 
(label was at same point in time as last sensor input, no 
delay or anticipation). Input data included all simulated 
IMUs and was 930 ms (or 187 data points) in length as 
discussed in the previous section. Label data included ML 
and AP COM position and velocity. Each TCN model was 
trained using 11-fold leave-one-subject-out validation using 
a mean squared error (MSE) loss function. Each model ran 
for 200 epochs, with a patience term of 50 epochs that ena-
bled early stopping.

We trained and validated three sets of models. First, we 
trained a set of models to evaluate the performance of dif-
ferent wearable device sensor configurations for standard 
estimation. We evaluated configurations for pelvis only (pel-
vis IMU), hip exoskeleton (torso and thigh IMUs), knee exo-
skeleton (thigh and shank IMUs), ankle exoskeleton (shank 
and foot IMUs), and all sensors (torso, pelvis, thigh, shank, 
and foot IMUs). This resulted in 55 models being trained due 
to 11-fold leave-one-subject-out validation and 5 configura-
tion conditions. Second, we trained a set of models using the 
hip exoskeleton sensor configuration for each of the delayed 
(50, 100, 150 ms) and anticipated (50, 100, 150 ms) estima-
tion cases. This resulted in 66 more models being trained 
due to 11-fold leave-one-subject-out validation and 6 total 
delayed and anticipated estimation cases. Third, we trained 
and tested an additional set of models to investigate how 
well models trained on steady state and perturbed data were 
able to estimate steady state and perturbed COM states. Our 
primary goal was to investigate the importance of including 
perturbed data in the training set and what, if any, impact it 
would have on steady state and perturbed outcomes. To do 
this, we used a subset of the trials discussed above, produc-
ing two data sets; the steady state data set included 1 s of 
data before the perturbation for each trial, while the per-
turbed data set included 1 s of data after the perturbation 
for each trial. We then trained models using each data set 
using the same 11-fold leave-one-subject-out validation 
approach, testing both the steady state and perturbed data 
for each hold-out subject. This resulted in training 22 more 
models for this analysis. This resulted in training 143 total 
models for these analyses.

Statistics

We performed statistical analyses using custom Matlab 
scripts (Mathworks, Natick, MA) and Minitab (Minitab 
19, United States). For each trial, we evaluated the model 
performance on a steady state and perturbed subset of the 
data; we defined the steady state subset as the 1 s before 
the perturbation and defined the perturbed subset as the 1 s 
after perturbation. For both the steady state and perturbed 
subsets, we calculated the mean absolute error (MAE) and 
correlation strength (R2) between the model’s estimated and 
actual COM states. The mean of both MAE and R2 were 
taken for every participant. All analyses were done on the 
participant means for every condition. To evaluate the effect 
of exoskeleton sensor configuration on mean absolute error 
(MAE) and correlation strength (R2), we performed a one-
way repeated measures ANOVA with sensor configuration 
as a fixed effect and participant as a random effect for each 
COM state outcome. We used post hoc comparisons with 
Bonferroni correction to evaluate sensor configuration 
comparisons. Resulting ANOVA p values and significant 
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comparisons are shown in Fig. 2. To evaluate the influence 
of estimation time, we again performed a one-way repeated 
measures ANOVA with estimation time as a fixed effect 
and participant as a random effect. We used post hoc com-
parisons with Bonferroni correction to evaluate the differ-
ences between zero-lag estimation and the six anticipated 

and delayed estimation times. Significant comparisons 
are shown in Fig. 3. To evaluate if perturbation conditions 
affected COM state estimates, we again used a one-way 
repeated measures ANOVA with perturbation condition as 
a fixed effect and participant as a random effect. We used 
post hoc comparisons with Bonferroni correction to evaluate 

Fig. 2  The effect of exoskeleton sensor configuration on mean abso-
lute error (MAE, lower is better) and R2 (higher is better) for center 
of mass (COM) state estimation. MAE and R2 are shown for medi-
olateral (ML) and anteroposterior (AP) position and velocity esti-
mates during both steady state (1 s before perturbation) and perturbed 
(1 s after perturbation) estimates. These values were calculated from 
the across-trial means for each participant, causing 11 samples to 

make up each distribution. The bars and error bars show the across-
participant mean and ± 1 standard deviation, respectively. Results are 
shown for zero-lag estimation, not delayed or anticipated estimation. 
For each subplot, the p value shows the results of a one-way repeated 
measures ANOVA and the comparison bars indicate significant dif-
ferences detected between exoskeleton sensor configurations. For 
both, the threshold for significance was set at α = 0.05
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Fig. 3  The effect of estimation time on mean absolute error (MAE, 
lower is better) and R2 (higher is better) for center of mass (COM) 
state estimation. MAE and R2 are shown for mediolateral (ML) and 
anteroposterior (AP) position and velocity estimates during both 
steady state (1  s before perturbation, shown in gray) and perturbed 
(1 s after perturbation, shown in red) COM state estimates. These val-
ues were calculated from the across-trial means for each participant, 
causing 11 samples to make up each distribution. The circular mark-

ers and error bars show the across-participant mean and ± 1 stand-
ard deviation, respectively. Slight offsets were used along the x-axis 
for better clarity of overlapping standard deviation bars and do not 
reflect different estimation times between the steady state and per-
turbed models. All results are shown for the hip exoskeleton sensor 
configuration (right). Comparison bars indicate significant differences 
detected between zero-lag (0 ms) estimation and other estimation 
times. The threshold for significance was set at α = 0.05
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the differences between perturbation conditions for groups 
with significant effects detected by the ANOVA. Resulting 
ANOVA p values and significant comparisons are shown in 
Fig. 4. Lastly, to evaluate the influence of steady state and 
perturbed training data on various outcomes, we performed 
a series of paired-sample t tests. Significance between pairs 
is shown in Fig. 5. Across all analyses, the threshold for 
significance was set at α = 0.05.

Results

Simulated Exoskeleton Sensor Configurations

We evaluated how various lower limb exoskeleton sensor 
configurations influenced MAE and R2 of COM state esti-
mates, with comparisons to baseline conditions that included 
a pelvis only IMU and all sensors (Fig. 2). During steady 
state walking, sensor configuration significantly affected 
MAE for all COM states except AP velocity and signifi-
cantly affected R2 for all COM state variables. During per-
turbed walking, sensor configuration significantly affected 
MAE and R2 for all COM state outcomes. For perturbed ML 
position and velocity, the pelvis only MAE was higher than 
all other configurations, while the pelvis only R2 was lower 
than the hip exoskeleton and knee exoskeleton configura-
tions. For perturbed AP position, hip exoskeleton and all 

sensors configurations had significantly lower MAE than the 
other configurations; R2 showed many differences between 
configurations, with the hip and all sensors configurations 
having the highest R2. For perturbed AP velocity, the pelvis 
only MAE was higher than all other configurations, while 
the pelvis only R2 was lower than all other configurations.

Delayed and Anticipated Estimates

We evaluated the influence of estimation time on the MAE 
and R2 of COM state estimates (Fig. 3). We aimed to deter-
mine if anticipated estimations (into the future) and delayed 
estimations (already occurred) significantly differed from 
zero-lag estimation. We evaluated the hip exoskeleton con-
figuration as it showed the best performance of the lower 
limb exoskeletons evaluated in the across-configuration 
analysis. We chose to evaluate the hip exoskeleton configu-
ration because the all sensors configuration did not provide 
significantly higher accuracy for any outcome and because it 
better represents a limited sensor set that would more feasi-
ble for implementation in wearable device or biomechanics 
experiments. During both steady state and perturbed walk-
ing, estimation time significantly affected MAE and R2 for 
all COM state outcomes (all p < 0.001). During steady state 
walking, + 100 and + 150 ms (anticipated) estimates were 
significantly different from zero-lag estimation for all COM 
state variables for both MAE and R2. The only significant 

Fig. 4  The effect of perturbation conditions on mean absolute error 
(MAE, lower is better) for perturbed center of mass (COM) state esti-
mation. MAE is shown for mediolateral (ML) and anteroposterior 
(AP) position and velocity estimates. The rows show the effect of 
magnitude, direction, and timing, with the colored diagrams (right) 
illustrating the represented conditions. These values were calculated 
from the across-trial means for each participant, causing 11 samples 

to make up each distribution. The circular markers and error bars 
show the across-participant mean and ± 1 standard deviation, respec-
tively. All results are shown for the hip exoskeleton sensor configu-
ration (right) for zero-lag estimation. For each subplot, the p value 
shows the result of a one-way repeated measures ANOVA. Compari-
son bars indicate significant differences detected between conditions. 
The threshold for significance was set at α = 0.05
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differences detected for delayed estimates were for ML COM 
velocity MAE (− 100 and − 150 ms) and AP COM velocity 
MAE (− 150 ms). During perturbed walking, + 50, + 100, 
and + 150 ms (anticipated) estimates were significantly dif-
ferent from zero-lag estimates for all COM state variables 
for both MAE and R2. For perturbed delayed estimates, 
significant differences were detected for ML COM position 
(− 150 for R2), ML COM velocity (− 100 and − 150 ms for 
both MAE and R2), and AP COM velocity (− 50, − 100, and 
− 150 ms for MAE and R2).

Influence of Perturbation Conditions

We evaluated the influence of perturbation magnitude, direc-
tion, and timing on MAE of zero-lag COM estimation (no 
delay or anticipation time; Fig. 4). We again evaluated the 
hip exoskeleton sensor configuration. Perturbation magni-
tude significantly affected all COM state estimates, with 
MAE increasing with increased perturbation magnitude. 
We detected significant differences between all perturbation 
magnitude conditions for all outcomes except between small 
(5 cm) and medium (10 cm) as well as medium (10 cm) and 
large (15 cm) perturbations for the ML position estimates. 
However, perturbation direction only affected ML and AP 
velocity estimates, with lateral (shown in pink) and antero-
lateral perturbations (shown in red) typically causing the 

highest MAE. Anterior and posterior perturbations (shown 
in orange and blue, respectively) tended to cause the lowest 
error across COM state outcomes. We only detected sig-
nificant differences between individual conditions for the 
ML velocity estimates; we detected differences between 
the lateral (pink)/anterior (orange), lateral (pink)/posterior 
(blue), anterolateral (red)/anterior (orange), and anterolateral 
(red)/posterior (blue) conditions. Representative trials for 
the purely AP and ML perturbations are shown in Fig. 6. 
Lastly, perturbation timing did not significantly affect any 
of the COM state estimates.

Influence of Training Data Type

We evaluated the influence of steady state and perturbed 
training data on steady state and perturbed estimation out-
comes (Fig. 5). We aimed to investigate how models trained 
on different types of data (steady state, perturbed) would 
influence the accuracy of COM estimates. We evaluated 
zero-lag estimation outcomes using the hip exoskeleton con-
figuration as it showed the best performance of the lower 
limb exoskeletons evaluated in the across-configuration 
analysis. The steady state COM state estimate MAE values 
were not significantly affected by the training data types. 
However, the R2 value for the AP position estimates was 
significantly higher for the steady state-trained model in 

Fig. 5  The effect of steady state 
and perturbed training data on 
mean absolute error (MAE, 
lower is better) and R2 (higher is 
better) for steady state and per-
turbed center of mass (COM) 
state estimation. MAE and R2 
are shown for mediolateral 
(ML) and anteroposterior (AP) 
position and velocity estimates. 
These values were calculated 
from the across-trial means 
for each participant, mean-
ing 11 samples make up each 
distribution. The bars and error 
bars show the across-participant 
mean and ± 1 standard devia-
tion, respectively. All results are 
shown for the hip exoskeleton 
sensor configuration for zero-
lag estimation. Comparison bars 
indicate significant differences 
detected between models that 
were trained on steady state and 
perturbed data. The threshold 
for significance was set at 
α = 0.05



2020 J. K. Leestma et al.

comparison to the perturbed-trained model. The perturbed 
COM state estimate MAE and R2 values between steady 
state-trained models and perturbed-trained models were sig-
nificant for all COM state outcomes.

Discussion

Exoskeleton Sensor Configurations

The first question that we aimed to investigate in this work 
was how well various lower limb exoskeletons could esti-
mate COM state given a standard IMU sensor set on each 
device. To provide baseline comparisons, we also evaluated 
the performance of a single simulated pelvis IMU, which is 
on the same segment used to approximate COM from bio-
mechanical data, as well as all sensors. We found that the 
pelvis sensor performed significantly worse than the other 
exoskeleton configurations, primarily when estimating COM 
state during perturbed walking (Fig. 2). This indicates that 

a single sensor is likely not sufficient for COM state estima-
tion but using segment-mounted sensors on a single joint 
exoskeleton is sufficient to maximize accuracy. Interestingly, 
we found few significant differences between exoskeleton 
sensor configurations. This finding includes the comparison 
to the all sensors configuration, indicating that increasing the 
number of sensors, relative to the three or four sensors on 
single joint exoskeletons, does not further improve predic-
tions. This indicates that various lower limb exoskeletons 
could provide accurate COM estimates without the need for 
additional sensors, enhancing the efficacy of this approach. 
Because the hip exoskeleton sensor set outperformed the 
pelvis more than the other exoskeleton configurations, we 
evaluated the hip exoskeleton configuration for the remain-
der of the analysis.

Delayed and Anticipated Estimates

We also wanted to evaluate how anticipated and delayed 
estimation times affected accuracy and correlation strength 
relative to zero-lag estimation (Fig. 3). Across all COM state 
estimates, steady state estimates were more accurate than 
perturbed. Because perturbations abruptly and transiently 
disrupt a usually cyclic COM state, we expected that the 
model would estimate perturbed COM state with lower 
accuracy. Across all COM state estimates, greater anticipa-
tion times decreased accuracy. This is the expected result, 
as predicting future CoM state changes during perturbed 
locomotion becomes highly challenging due to the lack of 
relevant time history information. However, the anticipated 
estimates are still promising, as the error for even the 150 
ms anticipated estimates did not even double the error of 
zero-lag (0 ms) estimates. Greater anticipation times are 
possible, but will likely cause increasing error and poorer 
performance, specifically immediately following the per-
turbation onset. These anticipated estimates could be used 
to enable faster exoskeleton responses, due to the system 
anticipating the user’s state rather than simply reacting to 
it. We expected better performance for delayed estimates, 
as the input data span the point in time that the estimate is 
being made for (i.e., the sensors include data from before 
and after the desired COM state estimate) [9]. Our results 
suggest that this is the case, with delayed estimates improv-
ing accuracy relative to zero-lag estimates across multiple 
COM state outcomes, particularly for COM velocity esti-
mates. However, greater delay times (up to or exceeding 150 
ms) may not be necessary to achieve this bump in accuracy, 
as there is relatively little difference in error across 50, 100, 
and 150 ms delays. The more accurate delayed estimates 
could be employed to enable mobile data collection, update 
machine learning models in real time to customize models 
to individual users, or in applications where a small amount 
of delay is acceptable.
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Fig. 6  Representative labels (black) and estimates (colors) for a 
single trial across four perturbation directions; lateral (pink), ante-
rior (orange), medial (green), and posterior (blue) perturbations are 
shown in columns one through four, respectively. Results are shown 
for mediolateral (ML) and anteroposterior (AP) position and velocity 
estimates. The perturbation is represented by the dashed line, where 
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(MAE) shown for each subplot indicates perturbed COM state MAE 
(after 0 s. on x-axis). The left and right y-axes show normalized and 
unnormalized units, respectively
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Influence of Perturbation Conditions

We also investigated how different perturbation character-
istics affected COM state estimation error (Fig. 4). First, 
perturbation magnitude had a clear effect on error, with 
increased perturbation magnitude causing increased error 
across all COM state variables. Additionally, perturbation 
direction significantly affected COM velocity error, but not 
position error; lateral and anterolateral perturbations, which 
induce a widening step maneuver, caused the most error 
across all COM state outcomes. Previous work has shown 
comparable trends in how balance is influenced by these 
perturbation conditions [17, 21]. This may suggest that error 
simply scales with the magnitude of the COM state signal, 
as higher magnitude perturbations and lateral perturbations 
have been shown to cause greater deviations in balance 
metrics and human recovery strategies. Lastly, we found 
that perturbation onset timing during the gait cycle did not 
significantly affect error for any COM state estimate. This 
suggests that this approach could be viable when deployed 
in uncontrolled environments where perturbations can onset 
at any time. The thoroughly significant effect of perturba-
tion magnitude but not necessarily direction or timing is 
possibly caused by the represented data in the training set. 
Generally, machine learning models are better at interpolat-
ing than extrapolating. Both the direction and timing vari-
ables are uniformly sampled from a “cyclic” or “circular” 
space in which all possible direction or timing conditions 
are reasonably captured by the training data. However, per-
turbation magnitude exists in a linear space where larger 
perturbations are near the bounds of the data represented in 
the training set, likely causing higher estimation errors for 
those conditions.

Influence of Training Data Type

We aimed to investigate the importance of including per-
turbed data in the training set. We predicted that includ-
ing perturbed data in the training set would be necessary to 
reduce error in perturbed estimates, with steady state-trained 
models providing poor estimates of perturbed outcomes. 
However, we also predicted that perturbation-trained models 
would slightly reduce the accuracy of steady state estimates 
in comparison to models that were trained only on steady 
state data. We found that, largely, training models with per-
turbed data did not reduce the accuracy of steady state esti-
mates. However, we also found that including perturbed data 
in the training set is crucial to improve the accuracy of per-
turbed COM state estimates. Broadly, this work implies that 
you may not need to choose between accurate steady state 
and perturbed estimates. Rather, expanding training sets to 
include diversely perturbed locomotion enhances perturbed 
estimates without sacrificing steady state accuracy.

Broader Implications, Limitations, and Future 
Directions

This work has shown that estimating COM state using sen-
sors typically onboard a single joint lower limb robotic 
exoskeleton is feasible. Specifically, the comparable per-
formance of sensor sets for hip and ankle exoskeletons 
is a promising sign for balance-augmenting exoskeleton 
research. Previous work in this area has focused on hip and 
ankle exoskeletons due to the role of these joints in gen-
erating balance-correcting responses [5–7, 22, 23]. Our 
approach to estimate COM state could be deployed on hip 
or ankle exoskeleton devices to enable exoskeleton control-
lers that correct for COM changes following perturbations. 
Additionally, this work demonstrates the ability of machine 
learning approaches to generate anticipated estimates that 
could enable wearable robots to be proactive rather than 
reactive by using future COM states to drive control. Our 
findings suggest that it is crucial to train models using per-
turbation conditions or other destabilizing conditions that 
are representative of the desired use case, and that doing so 
will not sacrifice steady state estimation accuracy.

This work also has limitations that should be consid-
ered by researchers looking to build off of these findings. 
First, the use of simulated IMUs assumes perfect coupling 
between the sensors and the participant’s skeleton. When 
implemented with physical sensors, soft tissue noise and 
decoupling between the user and exoskeleton, especially 
during periods of high torque assistance, could affect the 
IMU data. These challenges could be mitigated by layer-
ing noise profiles onto simulated IMU data for more repre-
sentative training data, using high-fidelity IMUs that present 
cleaner signals than IMUs more traditionally used in wear-
able robotic applications, or placing IMUs directly on the 
user rather than on the device to minimize user-exoskeleton 
decoupling during torque assistance. Additionally, the user’s 
COM was approximated in this work using the average of 
four pelvis-mounted motion capture markers. Depending 
on the use case of this model, this could be altered to bet-
ter approximate the whole-body COM by considering the 
combined COM of all body segments. Another important 
limitation to note is that this work was performed on a fixed-
speed instrumented treadmill. Though the perturbation plat-
form and treadmill provide an opportunity for repeatable 
and controlled perturbations to study, the fixed speed and 
lateral boundaries of the treadmill also limit the participants’ 
natural response. Future studies could build off of this work 
by training and testing COM estimation models in uncon-
strained overground environments.

Though simulated IMUs are one of the limitations of 
this work, our approach mitigates some of the shortcom-
ings that IMUs often present for position-based estimation. 
IMUs are typically sensors that introduce issues such as 
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noise and drift over time, with drift becoming increasingly 
problematic for position-based estimates that require single 
or double integration of the native gyroscope and acceler-
ometer signals (e.g., dead reckoning). This emphasizes a key 
benefit of machine learning-based approaches, which do not 
utilize integration and thus do not experience any drift. Our 
approach creates a mapping between the previous 930 ms 
of accelerometer and gyroscope data and the COM state, 
rather than directly integrating signals over time, to attain a 
position estimate which avoids issues associated with sen-
sor drift. However, these IMUs still only provide kinematic 
information and are likely far less reflective of COP changes 
underneath the foot. Though the approach presented in this 
work is promising, additional sensing could further enhance 
COM state estimation accuracy. The use of pressure insoles, 
which typically measure the vertical force and the ML and 
AP COP underneath the foot, would likely further enhance 
this approach. This addition could be particularly helpful 
in better estimating the sudden COM state changes imme-
diately following perturbations or other transient, rapid 
changes to the COM.

The work presented here utilizes previously optimized 
TCN hyperparameters from [13]. Because the estimation, 
and especially anticipated estimation, of biomechanical out-
comes during unsteady locomotion is a relatively nascent 
area of research, there are many possible avenues that could 
expand on the results presented here. First, further tuning the 
TCN’s hyperparameters could assist in bettering tailoring 
the model to perturbed applications. Specifically, there are 
opportunities to explore how input data time history should 
be tailored for perturbed applications, where longer time 
histories that have utility during steady state locomotion may 
not be as relevant to estimate rapid, transient changes in 
biomechanical outcomes. However, due to the structure of 
a TCN, increased time history also correlates with increased 
model depth that may enhance the model’s ability to learn 
from the training data. Thus, there are opportunities for 
hyperparameter tuning, as well as the exploration of differ-
ent or hybrid structures that optimize model structures for 
perturbed locomotion [24, 25]. Further model alterations and 
tuning could also be beneficial depending on the eventual 
use case of such a model. If used for perturbation detection, 
researchers may want to optimize the model’s performance 
in the immediate time windows after the perturbation. If 
used for continuous exoskeleton control, researchers may 
need to consider max error in addition to MAE to smooth 
out continuous model performance, as well as constrain exo-
skeleton output torques to mitigate transient model errors. If 
used for intermittent exoskeleton control, researchers could 
modify testing data sets to isolate model tuning and perfor-
mance evaluation to the exact targeted use cases. Broadly, 
this work provides strong initial support for the feasibility 
of real-time COM state estimates for exoskeleton control 

and opens many avenues for further refining these models 
for various use cases.

In future applications, the COM state estimation models 
in this work could be used to develop intelligent exoskeleton 
control architectures that react to COM state changes using 
concepts such as capture point and extrapolated center of 
mass to drive step placement, ankle moment modulation, 
or other balance-correcting responses [1, 2, 5, 26]. Other 
applications of this work could be collecting COM state 
data outside of a traditional biomechanics lab or using COM 
state for biofeedback in balance rehabilitation applications. 
Broadly, this work demonstrates that COM state estimation 
is possible with reduced sensor sets, for different delayed and 
anticipated estimation times, and across a large diversity of 
perturbation conditions.
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