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Deep Learning Enables Exoboot Control to Augment
Variable-Speed Walking

Max K. Shepherd , Member, IEEE, Dean D. Molinaro , Student Member, IEEE,
Gregory S. Sawicki, Member, IEEE, and Aaron J. Young , Member, IEEE

Abstract—Ankle exoskeletons have the potential to improve mo-
bility, but common controllers are often inflexible to variations
in tasks, such as changes in walking speed. To enable effective
variable-speed exoboot control, we developed and validated a two-
headed convolutional neural network trained to (1) classify stance
versus swing and (2) predict the phase during stance, which was
then mapped to a desired exoboot torque. This Machine Learning
Estimator (MLE) was trained from nine participants walking at
three speeds and four exoboot assistance levels. A Time-Based Esti-
mator (TBE) that predicted gait phase from the two previous stride
durations was used to apply realistic torques during MLE training
and served as a within–participant control condition. The MLE
was validated online with three new participants walking at a range
of speeds and torques, both interpolating within and extrapolating
outside the training set. Online validation accuracy (RMSE) across
tested speeds and torque levels was 3.9%. On a simple walking task
in which treadmill speed was varied sinusoidally between 1.1 and
1.6 m/s with a 30 s period, the three participants exhibited a mean
5.2% decrease in metabolic expenditure with the MLE compared
to no-exo (boots only), but exhibited a 5.4% increase when walking
with the TBE. The MLE more accurately predicted heel strike and
toe off events (heel strike Mean Absolute Error: 9.6 ms; toe off
MAE: 13.2 ms) than the TBE (heel strike MAE: 19.1 ms; toe off
MAE: 34 ms). These positive results validated the potential of using
a deep learning model for gait state estimation to effectively control
an ankle exoskeleton across variable walking speeds.

Index Terms—Exoskeletons, machine learning.

I. INTRODUCTION

POWERED ankle exoskeletons have successfully aug-
mented human energetics during walking [1]–[3]. Recent

studies have shown that these energetic benefits are highly
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sensitive to assistance timing, favoring assistance strategies that
provide positive net joint work during stance (i.e., commanding
plantarflexion torque during late stance) [4]–[6]. Additionally,
failure to promptly disengage plantarflexion assistance after toe
off (i.e., as the leg enters swing) can lead to increased antago-
nistic muscle activation and/or tripping. These considerations
can be accounted for via accurate stance phase estimation.
Stance phase can be defined using a continuous gait variable
that monotonically increases from 0% at heel strike to 100%
at toe off, and may be a function of time or a kinematic phase
variable [7]. Using a real-time estimate of stance phase, ankle
exoskeleton controllers can then compute desired plantarflexion
assistance using a predefined phase-based torque trajectory.

Most simply, stance phase can be estimated in a feed-forward
manner using a Time-Based Estimator (TBE), which stores the
timing of heel strike and toe off events from previous strides
in memory. Heel strike and toe off events are measured from
onboard contact sensors, such as force sensitive resistors (FSRs)
[2], [8], [9], ground reaction forces [2], or IMU-based heuristics
[1], [10]. Using the data from previous strides, the TBE computes
an expected stance duration, often by implementing a moving av-
erage filter over the previous measured stance durations. Finally,
stance phase is computed by dividing the time since last heel
strike by the expected stance duration. Using a TBE, previous
researchers have reduced the metabolic cost of walking with
ankle exoskeletons [1], [2], [10]; however, these studies have
been limited to steady-state ambulation (e.g., constant speed
treadmill walking), since the TBE assumes steady, periodic
ambulation.

Alternatively, machine learning has become a popular ap-
proach for estimating gait variables used in exoskeleton con-
trollers [11]–[15]. We previously investigated the efficacy of
various types of deep neural networks for estimating gait phase
using sensors onboard a robotic hip exoskeleton [11], [12].
We found that using a Convolutional Neural Network (CNN)
significantly outperformed a TBE during overground ambu-
lation. Specifically, the CNN-based gait phase estimator was
able to instantaneously adapt gait phase estimates with natural
stride-to-stride changes, while the expected stride duration of the
TBE lagged, due to its reliance on previous stride data. Though
the principles of gait phase estimation promise to be applicable
for ankle exoskeletons, it remains unclear if a machine learn-
ing stance phase estimator would have similar benefits. Distal
sensors may contain more information about foot contact than
proximal sensors, which would be advantageous in detecting
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Fig. 1. (Left) Picture of the Dephy Exoboots. (Right) The speeds and torques
collected as training data from nine participants (black error bars), and the torque
and speed levels tested during validation (blue x’s).

stance/swing transitions. However, many ankle exoskeletons
utilize unidirectional cable-based transmissions, which enable
light and efficient torque amplification, but which necessitate
mid-level state machines capable of managing slack during
swing [2], [16]–[18]. Because of this, it is critical to accurately
detect heel strike and toe off events in tandem with stance phase
estimation to achieve effective ankle exoskeleton assistance.

In this paper, we propose and validate a user-independent Ma-
chine Learning Estimator (MLE) that simultaneously (1) detects
stance/swing transitions (binary classification) and (2) estimates
stance phase (regression) using a two-headed, deep convolu-
tional neural network. We validated this system by quantifying
stance phase and stance/swing transition accuracy while using
the MLE to control the Dephy ExoBoots (Dephy Inc., Maynard,
MA, USA), a commercially available bilateral ankle exoskeleton
(Fig. 1). To test the real-world efficacy of our system, we
evaluated its performance on three novel users during constant-
speed walking conditions within and outside of the training set
distribution and during variable-speed walking. Additionally,
we hypothesized that the benefits of machine learning gait state
estimation would lead to a reduction in metabolic cost during
variable speed walking compared to using a TBE for exoskeleton
control. Given the positive results of our proposed framework,
our study solves the problem of stance phase estimation during
real-world gait and demonstrates the benefits of this frame-
work during transient ambulation. To reduce the barrier-to-entry
for using our MLE on the commercially available Dephy Inc.
exoboots, we have also released the trained parameters of our
network, available here: https://github.com/maxshep/exoboot-
ml-gait-state-estimator.

II. POWERED EXOBOOTS

A. Exoboot Hardware

The Dephy ExoBoots (Model 504; Firmware v7.1, Dephy
Inc., Maynard, MA, USA) are powered boots, capable of apply-
ing ∼30 Nm of peak plantarflexion torque through shin cuffs
and carbon fiber keels embedded in the boots’ midsoles (Fig. 1).
A shank-mounted motor transmits torque to the ankle through a
nonlinear, unidirectional belt-driven transmission. Additionally,
a waist-mounted pack houses a Raspberry Pi 4B microprocessor

(Raspberry Pi Foundation, Cambridge, U.K.) used to run the
main control loop, a 5 V battery that powers the microprocessor,
and two 22.2 V lithium polymer batteries wired in series to
power the exoboot actuators. The exoboots have built-in shank-
mounted IMUs, and a 14-bit absolute encoder at the ankle joint.
The left IMU was transformed to follow left-hand rule, and
the absolute encoders were zeroed based on kinematic hard
stops (i.e., were not recalibrated between participants). These
adjustments mirrored sensor data across the sagittal plane, and
left/right data was effectively indistinguishable. Each exoboot
had mass 1.4 kg, and the waist-mounted pack had a total mass
of 1.9 kg.

B. Exoboot Controller

The main control loop ran sequentially on the Raspberry Pi
at 200 Hz using Python v3.7. To accommodate the change in
ankle dynamics between stance and swing, the controller was
implemented using a four-state finite-state machine. During leg
swing (state 1), the exoboots quickly decoupled the user’s ankle
joint from the motor’s reflected inertia by slacking (reeling-out)
the belt. Slacking the belt prevented any detrimental resistance
to swing-phase dorsiflexion, allowing for adequate ground clear-
ance of the toes. During this state, the actuators were commanded
using position control to minimize excessive slack in the system,
which could lead to delayed assistance onset. At heel strike, the
controller softly reeled-in the belt by commanding voltage to
mitigate rapid torque onset to the user at heel strike (state 2).
After reel-in, exoboot assistance torque was commanded to the
actuators using open-loop torque control (state 3). The desired
assistance torque was computed using a predefined piecewise
cubic hermite interpolating polynomial, which was a function
of the estimated stance phase. The nodes of the assistance poly-
nomial were tuned based on those optimized by Zhang et al. [2].
The resulting assistance polynomial maintained a bias torque
of 3 Nm after reel-in until 33% of stance phase, then increased
assistance until a peak torque at 84% of stance.

C. Time-Based Estimation of Gait Phase (TBE)

To collect data for our CNN-based gait state estimator, we
developed a baseline controller using a set of heuristics to
estimate gait phase, heel strike, and toe off suitable for constant
speed walking. Heel strike was detected as a peak in the onboard
sagittal plane angular rate gyro, with a 50 ms added delay to
better align with true heel strike; this delay was determined from
high-speed video (n = 1). A Time-Based Estimator (TBE) then
used a moving average to track the two previous stride durations
and project forward to the next stride. Notably, our TBE was
more conservative (i.e., used fewer previous strides) than most
other TBEs; we wanted our TBE to be highly adaptive to natural
changes in walking speed during our over-ground trials. Toe off
was hardcoded at 62% of the predicted stride duration, based
also on high-speed video as well as pilot participant feedback (n
= 1), and stance phase was calculated from a linear interpolation
in time between heel strike and toe off. Importantly, this method
is open-loop; the only external sensing is the heel strike detection
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Fig. 2. Machine Learning Estimator (MLE) of gait state model architecture. A sliding 220 ms window of sensor data is input to the first convolutional layer
(kernel size: 20). Intermediate convolutional layers further compress until the network is flattened and split into two heads; one (bottom inset) concludes in a binary
classifier predicting stance/swing, and the other (top inset) estimates stance phase. The stance/swing classifier informs the four-state state machine, which produces
plantarflexion torque during stance based on the stance phase regressor.

via the gyroscope, and stance phase and toe off were based
entirely off the previous two stride durations.

III. CNN-BASED GAIT STATE ESTIMATOR DEVELOPMENT

A. Training Data and Labeling

Nine participants (5 male, 4 female; height: 171 ± 10 cm;
body mass: 74 ± 9 kg) participated in the training data collec-
tions. All participants in this study provided informed consent
to participate, and this study was approved by the Georgia
Institute of Technology Institutional Review Board. Training
data trials consisted of a grid of walking speeds (0.9 m/s to
1.5 m/s) and exoboot torque levels (0, 10, 20, and 30 Nm)
(Fig. 1), with torque applied based on the TBE. The purpose
of applying torque during the training data collections was to
create more realistic sensor input for the model to be trained
on; subjects often change lower-limb kinematics when walking
due to added assistance [19], and the interface displaces due to
soft tissue compliance as well as flexing in the exoboots. Thus,
it was important to capture these effects in the training data by
mimicking the desired controller. Trials took place overground
in an 81 m hallway, and an experimenter set the pace (after
timed practice runs) while walking in front of the subject with
a stopwatch and target trial completion times.

Force-Sensing Resistors (FSRs) (Tekscan, Boston, Mass,
USA) were taped underneath the insoles, and approximately
under the heel and the head of the first metatarsal joint. FSR
data were debounced with a 40-sample median filter and visu-
ally inspected and manually corrected for missed strides. The
stance/swing label was determined from the rising edge of the
heel FSR and the falling edge of the toe FSR, and the stance phase
label was calculated as a temporally-interpolated percentage
between heel strike (0% stance) and toe off (100% stance).

B. Machine Learning Estimator of Gait State (MLE)

The purpose of the Machine Learning Estimator (MLE) was
to predict stance/swing (binary classification) and the percent

stance (regression) from a sliding window of unilateral exoboot
sensor data (Fig. 2). Based on our previous work, we imple-
mented a deep convolutional neural network (CNN) [11]. Inputs
to the network included 3-axis linear accelerations and 3-axis
angular velocities from the built-in, shank-mounted IMU, ankle
angle from an absolute magnetic encoder, and ankle velocity,
which was calculated via first-order finite differencing and fil-
tered with a causal 2nd order 10 Hz Butterworth filter. IMUs
follow right-hand-rule on the right exoboot and are mirrored to
follow left-hand-rule on the left exoboot.

The neural network was trained in Tensorflow v2.3.0. The 1D
CNN portion of the network consisted of three convolutional
layers (30 feature maps each, and kernel sizes of 20, 20, and
6), with ReLU activation functions. The input consisted of a
window of the 44 most recent samples (∼220 ms). Kernel sizes
were chosen for the CNN to reduce the window to a single neuron
depth (by the 30 filters in the final layer). The first and second
convolutional layers were followed by batch normalization.
The network then split into two fully-connected layers with 20
neurons each. One head predicted percent stance, with a MSE
loss function that ignored swing phase. The other head detected
stance/swing using a binary cross entropy loss function. Losses
were combined with a weighted average (80% for the stance
phase regression, 20% for the stance/swing classification).

Training data consisted of 128-sample sequences. The model
was trained using data from both left and right exoboots si-
multaneously. The model was optimized with Adam, an adap-
tive learning rate optimization algorithm, and stopped after 12
epochs (determined from average performance on leave-one-
subject-out validation).

C. Offline Validation

Prior to online testing, we assessed sensitivity of offline leave-
one-participant-out validation results to various components of
model architecture (e.g., CNN and DNN (Deep Neural Network)
width and depth, kernel sizes, normalization layer locations).
Generally, increasing the number of CNN or DNN layers did not
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lead to improvements in performance, nor did low-pass filtering
input data. Average offline Root Mean Square Error (RMSE) for
stance phase across participants was 3.8%.

IV. ONLINE VALIDATION

A. Online MLE Implementation

The MLE was implemented on an NVIDIA Jetson Nano
(NVIDIA, Santa Clara, CA, USA) for online inference using
Python v3.6.9, which accounted for 0.4 kg of the waist-mounted
system. Before running the network online, it was converted to
a TensorRT runtime engine to maximize inference speed using
TensorRT v7.1.3. The Jetson Nano (server) communicated with
the Raspberry Pi (client) via an ethernet cable using TCP/IP.
During operation, the Raspberry Pi streamed exoboot sensor
data of size R9 to the Jetson Nano, containing IMU and encoder
data of a single exoboot. Each packet also contained a flag
indicating the corresponding exoboot (left or right). The Jetson
Nano maintained a first-in-first-out buffer of exoboot sensor data
with size R44x8 for each exoboot, which was used as the input
to the MLE model. The MLE was sampled with each incoming
data packet from the Raspberry Pi. After inference, the Jetson
Nano streamed the MLE estimates along with the side flag back
to the Raspberry Pi with an approximate latency of 6 ms from the
time the corresponding data packet was sent by the Raspberry Pi.

B. Online MLE Validation Protocol

Three participants (2 male, 1 female; height: 179 ± 10 cm;
body mass: 66 ± 11 kg), who did not participate in the training
data collection protocol, participated in each stage of the online
MLE validation protocol: 1) MLE accuracy testing at multiple
peak assistance torques; 2) MLE accuracy testing at multiple
constant walking speeds; 3) MLE and TBE accuracy testing and
human metabolic cost validation during variable-speed treadmill
walking. During Stage 1 of the protocol, each participant walked
for 1 min/trial on a Motek CAREN treadmill at 1.2 m/s while the
MLE-informed exoboots assisted the user with each validation
peak torque shown in Fig. 1(10, 15, 20, 25, 30 Nm). During
Stage 2 of the validation protocol, each participant walked for
1 min/trial on the treadmill at each validation speed shown
in Fig. 1(0.7, 0.9, 1.2, 1.5, 1.7 m/s) while the MLE-informed
exoboots assisted the user with a peak torque of 20 Nm.

For Stage 3 of the validation protocol, each participant was
outfitted with a COSMED K5 metabolic system (COSMED
USA, Inc., Concord, CA, USA). A sinusoidally varying tread-
mill speed profile was then prescribed, ranging from 1.1 to
1.6 m/s with a 30 s period. Subjects walked twice each in
three different conditions: 1) NO EXO (boots only with all
exoboot hardware removed); 2) Time-Based Estimator (TBE),
in which the exoboots provided assistance with a peak torque
of 30 Nm using a two-stride moving average TBE as described
in Section II.C; and 3) Machine Learning Estimator (MLE), in
which the exoboots provided assistance with a peak torque of
30 Nm using our MLE as described in Section III.B. Trials for the
three conditions were repeated in a within-participant counter-
balanced design (i.e., ABC-CBA). Participants were blinded to

the condition, and the trial order was pseudo-randomized, with
the NO EXO condition either in the A or C position to reduce
exoboot don/doff time during the experiment. The participants
walked at each condition for 6 minutes and metabolic cost was
computed using a modified Brockway equation [2], [20], which
was a function of the VO2 and VCO2 data. Six minutes of
quiet standing followed the walking trials, to determine basal
metabolic rate. The resulting steady-state metabolic cost for each
condition was computed as the average metabolic cost computed
over the last three minutes of each trial, minus the metabolic cost
of quiet standing.

V. RESULTS

The three validation participants completed all trials. One
participant completed the constant-speed trials and the varying-
speed trials on separate days, and one of the participants had an
FSR misplacement, and their left exoboot data were discarded.

Stance phase Root Mean Square Error (RMSE) across all
tested constant speeds and torque levels was 3.9% for the MLE,
which was close to the RMSE found in our offline leave-
one-participant-out analysis (3.8%) (Fig. 3). There was a large
participant-specific effect on stance phase RMSE, which may
have been due to either participant-specific gait patterns or FSR
placement.

During the variable-speed trials, commanded torque RMSE
relative to the FSR-based retrospective ground truth was 2.6 ±
0.2 Nm and 3.3 ± 0.2 Nm for the MLE and TBE, respectively
(Fig. 4a). Similarly, the MLE more accurately estimated peak
assistance timing compared to the TBE, resulting in an average
peak assistance timing Mean Absolute Error (MAE) of 19 ±
8 ms and 27 ± 2 ms, respectively (Fig. 4b). Additionally, there
were large disparities in heel strike and toe off accuracy and
consistency (Fig. 4d and e). On average, the TBE was early in
detecting heel strike (14 ± 19 ms early) and late in detecting toe
off (24 ± 33 ms late), with larger between-stride variability. The
MLE, by contrast, was late but more consistent in detecting both
heel strike (9.3 ± 7.1 ms), and toe off (7.7 ± 15 ms). There was
also a one-cycle delay in communication between the Raspberry
Pi and Jetson Nano, which would account for 5 ms of the MLE
delay on average. The MAE for the MLE’s heel strike and toe
off detector were 9.6 ms and 13.2 ms, respectively, compared
to the TBE’s heel strike (MAE: 19.2 ms) and toe off detector
(MAE: 34.0 ms).

Finally, all three participants reduced their metabolic cost
while wearing the exoboots when using the MLE compared
to NO EXO (mean: 5.2% decrease; [−7.2%, −3.3%, −5.1%];
Fig. 4c). The TBE that was used to collect realistic training data
did not show an improvement in metabolic cost compared to
the NO EXO condition (mean: 5.4% increase; [+8.7%, +6.7,
−2.9%]; Fig 4c). Average basal metabolic rate was 1.16 ±
0.21 W/kg.

VI. DISCUSSION

This study introduced and validated an end-to-end user-
independent Machine Learning Estimator (MLE) that instanta-
neously detected stance/swing transitions and estimated stance
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Fig. 3. (Left) Data from the MLE stance/swing classifier (top), the stance phase estimator (middle), and the resulting commanded torque profile (bottom) are
shown for a representative participant walking at multiple speeds. Ground truth profiles (blue) are derived from FSR labeling. (Right) RMSE vs. peak torque (top),
and RMSE vs. walking speed (bottom) for the three validation participants. Markers denote individual participant means. Note: FSR data from the left exoboot of
the participant denoted with ‘x’ was discarded due to sensor failure, so their data had a lesser effect on the mean.

Fig. 4. Performance comparison between the Time-Based Estimator (TBE)
and Machine Learning Estimator (MLE) during a treadmill task with sinu-
soidally varying speed. (a) The MLE had lower torque RMSE than the TBE
and (b) lower MAE of peak torque timing. Note: individual participant averages
are denoted with unique markers. (c) The resulting metabolic cost while walking
in the exoboots using the MLE and TBE during the variable-speed trial is shown,
along with the resulting metabolic cost of walking without wearing the exoboots
(NO EXO). (d) The TBE also had larger errors in heel strike estimation and (e)
toe off estimation compared to the MLE.

phase during variable-speed walking for ankle exoboot control.
Our approach used a two-headed convolutional neural network
capable of estimating gait state using onboard exoboot sen-
sors without the need for user-specific calibration. To validate
our system, the MLE was evaluated online as novel users

walked with the MLE-informed exoboot controller during both
constant-speed and variable-speed walking. In general, the MLE
performed well, leading to a mean 5.2% reduction in metabolic
cost during variable-speed walking compared to the NO EXO
condition (n = 3: −7.2%, −3.3%, −5.1%, Fig. 4c). This result
was accompanied with an average commanded torque RMSE of
2.6 Nm (peak assistance torque was 30 Nm) and an average peak
assistance timing MAE of 19 ms. Thus, our proposed method
generalized well to speeds and accelerations representative of
natural gait [21].

Using the MLE to control the exoboots reduced the metabolic
cost of walking by a total of 10.6% compared to using the TBE
during the variable-speed trial (n= 3: 15%, 9.7%, 2.3%; Fig. 4c).
This was expected since the TBE relied on data from the previous
two strides to estimate the expected duration of the current stride.
As the walking speed changed, the expected stride duration of
the TBE consistently lagged the correct value. Surprisingly, this
discrepancy completely removed the energetic benefit of the
exoboots, as the MLE condition reduced the metabolic cost of
walking compared to not wearing the exoboots while the TBE
condition increased it. Further, all three validation participants
strongly preferred the MLE compared to the TBE during these
tests, despite being blinded to the controller conditions.

During the variable-speed trials, the TBE misidentified toe
off timing more frequently, with toe off error distributions of
24 ± 33 ms compared to the MLE: 7.7 ± 15 ms (Fig. 4e).
Similarly, the TBE had larger error in peak torque timing than
the MLE (Fig. 4b). These results reinforce the findings from
previous ankle exoskeleton studies [2], [8] that late stance phase
estimation accuracy is critical for effective ankle exoskeleton
control. Additionally, we found that the MLE error distribution
about heel strike was smaller than that about toe off. It is likely
that the impact of heel strike provided richer information in
the exoskeleton sensor data compared to during toe off. To
further prioritize accurate late stance phase estimation and toe off
detection, it is possible to customize the loss function to weight
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the relative importance of estimation accuracy throughout stance
and between heel strike and toe off detection.

During the online validation trials, the MLE generalized well
to changes in walking speed and peak exoboot assistance. This
validation included walking speeds both within and outside of
the training set, as well as a wide range of peak assistance
torques including the maximum torque capable of the exoboots
(30 Nm), suggesting that the MLE generalized well to a variety
of conditions experienced during level ground walking. Further,
the stance phase RMSE and stance/swing error distributions
of the MLE were similar when comparing the results of the
constant speed validation trials (Fig. 3) to the variable-speed
trials (Fig. 4), in which the participant was continuously accel-
erating or decelerating their walking speed. Of these conditions,
the MLE performed worst during the slowest walking speed
(0.7 m/s). This may be caused by increased stride-to-stride vari-
ability in walking at low speeds [22], or the decrease in signal to
noise ratio of the kinematic exoboot sensors during this condition
compared to the others. More generally, phase-based approaches
will require a high-level controller to govern behavior during
non-cyclic or quasi-cyclic tasks like shuffling, and may need to
switch to other mid-level control methods not requiring defined
phase, such as biological torque estimation [23], [24].

It’s likely that the MLE could be further improved with more
participants in the training data, more spline timing parameters
in the training data (e.g., the stance percentage mapped to peak
torque), and the introduction of data from the contralateral
limb. While the overground training likely added useful nat-
ural variability to the model, the training protocol could also
be designed to include accelerations/decelerations, or explicit
variations in step length/step width. Metabolic effects of the
exoboots may depend on training and adaptation; a user’s ability
to synergistically activate their plantarflexors with the device
may improve over time, and required training may be highly
user-specific [25], [26]. Understanding how simple time-based
gait state estimation versus learned kinematic-based gait state
estimation affect user adaptation is an important direction for
future research.

A major limitation in this study is that the TBE parameters
were not perfectly tuned or optimized, and the TBE is an imper-
fect control condition (i.e., there is no perfect ground truth). The
TBE gyro-based heel strike detector was tuned based on high-
speed video but was biased to be earlier than the FSRs indicated.
Similarly, the TBE toe off was hardcoded at 62% of the stride
rather than the∼60% that we found from the FSRs, which likely
explains the delayed average toe off. The delayed toe off, in
combination with the TBE’s expected over-prediction of stance
duration during treadmill accelerations, caused peak torque and
reel-out to occur exceptionally late. Anecdotally, this induced
visible compensatory mechanisms to prevent toe scuffing. We
wanted both controller conditions to be user-independent, but the
heel strike delay parameter and toe off percentage would likely
have been improved had they been tuned on an individual-basis.
Also, the use of two previous strides in the TBE, compared to
the greater number used in other (albeit steady-state) studies,
allowed quicker controller adaptation to gait speed, but may not
have adequately filtered natural stride-to-stride variability.

A large portion of the total error was likely due to noise
in the FSR signals, stemming from placement inconsistencies
and sensor degradation. Future experiments could use a force-
instrumented treadmill to obtain more reliable estimates of heel
strike and toe off events, though we noted substantial cross-
stepping during our validation tests. With only three validation
participants, it is unknown whether the metabolic trends would
apply to a larger sample of users, and we do not have statistical
power to test this trend. Finally, in approximately 10% of the
training and validation trials, the exoboot firmware had critical
errors that caused the exoboots to go unstable; these experiences
may have prevented subjects from fully trusting the devices, and
they may have altered their gait to ensure stability.

Though the participants in the validation trials were on aver-
age 8 kg lighter and 8 cm taller than in the training group (with
one validation participant being the tallest and another being the
lightest of all participants), the model successfully extrapolated
to their anthropometrics. However, it’s unknown how well the
model would perform with people further outside of these distri-
butions in terms of height, weight, age, or ambulatory ability. In
particular, we expect user-dependent models would need to be
trained for individuals with asymmetric gait impairments, and
using the same model for both the left and right sides may fail.

In future studies, we plan to add ambulation modes such as
ramps and stairs, as well as a high-level state machine capable of
predicting activity mode. The MLE we introduced here is also
suitable for user-specific optimization of metabolic cost and/or
preferred walking speed.
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