
  Abstract—Objective: Semi-active exoskeletons combining 
lightweight, low powered actuators and passive-elastic elements 
are a promising approach to portable robotic assistance during 
locomotion. Here, we introduce a novel semi-active hip exoskeleton 
concept and evaluate human walking performance across a range 
of parameters using a tethered robotic testbed. Methods: We 
emulated semi-active hip exoskeleton (exo) assistance by applying 
a virtual torsional spring with a fixed rotational stiffness and an 
equilibrium angle established in terminal swing phase (i.e., via pre-
tension into stance). We performed a 2-D sweep of spring stiffness 
x equilibrium position parameters (30 combinations) across 
walking speed (1.0, 1.3, and 1.6 m/s) and measured metabolic rate 
to identify device parameters for optimal metabolic benefit. 
Results: At each speed, optimal exoskeleton spring settings 
provided a ~10% metabolic benefit compared to zero-impedance 
(ZI). Higher walking speeds required higher exoskeleton stiffness 
and lower equilibrium angle for maximal metabolic benefit. 
Optimal parameters tuned to each individual (user-dependent) 
provided significantly larger metabolic benefit than the average-
best settings (user-independent) at all speeds except the fastest (p 
= 0.021, p = 0.001, and p = 0.098 at 1.0, 1.3, and 1.6 m/s, 
respectively). We found significant correlation between changes in 
user’s muscle activity and changes in metabolic rate due to 
exoskeleton assistance, especially for muscles crossing the hip 
joint. Conclusion: A semi-active hip exoskeleton with spring-
parameters personalized to each user could provide metabolic 
benefit across functional walking speeds. Minimizing muscle 
activity local to the exoskeleton is a promising approach for tuning 
assistance on-line on a user-dependent basis. 

 
Index Terms—Exoskeleton, Hip, Muscle Electromyography, 
Impedance Control, Metabolic Cost, Walking Speed 

I. INTRODUCTION 
xoskeletons have been increasingly successful at providing 
enhanced walking performance by reducing the metabolic 

rate of the user [1]. Exoskeletons (exos) showing the largest 
metabolic benefits typically use control systems optimized to 
generate assistive torques at a target joint (e.g., ankle or hip) 
with timing and magnitude set specifically for a fixed gait (e.g., 
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walk or run) and locomotor demand (e.g., speed or grade) on a 
treadmill [2-7]. These studies have provided a valuable 
foundation upon which the field is poised to expand. Indeed, a 
grand challenge remains to develop exos that can provide 
assistance outside the laboratory across the full functional range 
of locomotion modes (i.e., gaits, speeds, grades, stairs, 
unstructured terrain, etc.) used in everyday life. Toward this 
end, more research is needed to uncover strategies that are 
versatile enough to provide useful assistance across a broad 
range of locomotion behaviors in a form-factor that is 
streamlined and easy to use and maintain. Our goal here was to 
build on recent studies that have started to examine how exo 
assistance should change with gait [6], across speed [8], and 
according to the target joint for assistance [9]. Comprehensively 
examining users’ physiological response to single-joint exo 
assistance strategies across walking speed is an important first 
step. 

Taking clues from basic neuromechanics and energetics 
studies that address the joint-level mechanisms humans use to 
adapt locomotion behavior in response to changing demands 
could help guide versatile exoskeleton assistance strategies [10, 
11]. For example, above self-selected walking speeds (>~1.3 
m/s), there are stereotypical changes in lower-limb joint 
mechanics that accompany higher metabolic rate and metabolic 
cost of transport [10, 12]. As walking speed increases, both 
positive and negative mechanical work done on the center of 
mass increase in proportion to net metabolic rate [13]. To 
effectively handle the increased demand for mechanical work, 
humans increase muscle power output at all lower-limb joints, 
with hip (>40%) outpacing ankle (<40%) at the fastest speeds 
[10, 12, 14]. Observing which joints inject positive work into 
the gait cycle could provide guidance regarding where to place 
exo motors and when to activate them. Joint-level biomechanics 
can also be characterized by the relationship between the net 
muscle-tendon moment and the joint angle during steady-state 
movement, the quasi-stiffness. In fact, the quasi-stiffness of the 
lower-limb joints is modulated with speed. Throughout stance 
phase, quasi-stiffness increases with speed at all joints with the 
exception of the knee during weight acceptance [15-17]. The 
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quasi-stiffness could provide guidance regarding stiffness and 
engagement timing of exo springs to provide unpowered elastic 
torque assistance. More studies are needed to understand 
whether and how exo assistance strategies should change in 
accordance with changing mechanical properties of the lower-
limb joints across walking speed. 
 Given the goal to provide metabolic benefit across walking 
speeds, the hip joint emerges as a desirable target for exo 
assistance. Indeed, as previously mentioned, the hip muscle-
tendons are major positive power generators during walking 
and become increasingly important at the fastest speeds [14]. It 
is also worth noting that the hip emerges as an even clearer 
power source uphill [11] and during accelerations [18, 19]. 
Further, simulation studies have predicted hip musculature may 
consume more energy during walking than muscles at the ankle 
[20]. This could be in part, due to morphological differences in 
ankle vs. hip muscle-tendons that make efficiency of positive 
work lower at the hip [21]. Focusing exo assistance on the least 
efficient lower-limb joint could yield more ‘bang-for-buck’ in 
terms of metabolic energy savings of the user. In addition to the 
physiological basis for focusing on the hip, it is also important 
to consider that the metabolic penalty due to added load of an 
exo placed at the hip would be small compared to other joints. 
Carrying added mass close to the body center or mass is 
relatively cheap compared to carrying it distally on the legs 
[22].  
 Despite the inability to generate positive mechanical power, 
passive devices have successfully enhanced walking 
performance at the hip, with modest metabolic benefits around 
3% [23-25]. Success is mainly due to the lightweight nature of 
passive exos and tuning the elastic properties of the system (i.e., 
stiffness and equilibrium point) to generate useful assistance 
torque patterns that help the hip flex the leg into swing. A 
downside of the passive approach is that static mechanical 
properties of springs and dampers are static and may not be 
appropriate for all locomotion modes. To increase passive 
assistance adaptability, electromechanical clutches have been 
implemented in knee exoskeletons to modulate passive element 
properties and engagement but did not allow positive power 
generation. [26, 27]. Powered devices are bulky, require an 
energy source and may be harder to maintain, but can modulate 
torque assistance patterns on-line. In addition, powered exo 
assistance at the hip shows clear (and much larger) benefit, 
especially when timed to deliver torque during the early stance 
extension phase of walking [4, 28-30].  

Hybrid designs that combine elements of both passive and 
active systems could allow adaptive torque assistance with 
lower actuator mass. For example, semi-active systems 
containing both motors and elastic elements could inject 
mechanical power in one gait phase and provide torque to 
support bodyweight in another, switching modes through a 
clutch-able transmission. Or perhaps low-power output motors 
could be used to merely switch the mechanical properties of 
elastic elements rather than directly drive motion of the user. 
We contend that semi-active solutions could enable high 
performance of active systems with simplicity of passive 
systems. 

A semi-active approach that combines passive and active 
elements has been applied to wearable devices, but mostly in 
prostheses. In one type of semi-active system, the passive 

components provide the assistance to the user while the active 
components are used to alter the mechanical properties or state 
of the passive components. Indeed, semi-active foot-ankle 
prostheses can modulate stiffness step by step to emulate 
physiological torques across modes like speeds, inclines, and 
stairs [31-34]. To our knowledge, semi-active lower-limb exo 
applications have not yet been realized, although there are 
creative actuator designs [35-38] and exciting theoretical 
concepts for how they might function [11, 39]. To explore these 
concepts, impedance control (torque based on virtual passive 
mechanical elements) can be implemented to mimic passive 
and semi-active devices to maximize performance, as seen with 
an ankle-foot prosthesis emulator [40]. Nevertheless, research 
addressing if/how the optimal passive properties (i.e., torque 
profile) of semi-active exo systems should change across modes 
and/or where active elements can best contribute is missing. 
Before spending time and effort building semi-active systems, 
lab-based emulator systems could be a useful tool to explore the 
utility and lay groundwork for semi-active exoskeletons.  

Here, we employ a tethered exo emulator to apply hip torque 
to human users and examine whether the metabolic benefit of a 
virtual hip spring (i.e., a simple impedance) depends on its 
passive mechanical properties across walking speed. In short, 
we examined changes in users’ metabolic rate across a wide 
range of stiffness and equilibrium angle of a virtual hip torsion 
spring [30 sets = 5 stiffness values (k) by 6 equilibrium angles 
(θ0) at each of three walking speeds (1.0, 1.3, and 1.6 m/s). We 
hypothesized that: (i) optimal ‘semi-active’ assistance would 
provide a metabolic benefit at each speed; but (ii) the optimal 
assistance parameters would mirror changes in physiological 
moment-angle behavior (i.e., quasi-stiffness [15]) with 
increasing speed. That is, with increasing walking speed we 
expected an increase in optimal hip exo spring stiffness (k) and 
a decrease in optimal hip exo spring equilibrium angle (θ0) (i.e., 
biased closer to peak hip extension). 

II. METHODS   

A. Impedance Controller 
To evaluate human locomotion performance with a semi-

active hip exoskeleton (exo), we emulated the function of 
motor-spring-clutch system using a tethered, cable-driven 
bilateral hip exoskeleton [41] (Human Motion Technologies, 
Pittsburgh, PA) while participants walked on an instrumented 
split-belt treadmill (Bertec, Inc.) (Fig. 1A) with assistive torque 
generated by a simple impedance controller (i.e., virtual 
torsional spring) (Fig. 1B, top schematic). During assistance to 
the user (STATE 1, light gray), virtual Clutch 1 engaged the 
spring to the user and exo torques emulated a passive spring as 
a function of hip angle, 𝜃𝜃ℎ𝑖𝑖𝑖𝑖, according to a preset passive 
spring stiffness, 𝑘𝑘, and equilibrium angle, 𝜃𝜃0 according to (1) 
below (Fig. 1B, bottom timeseries graphs). 

 
 

𝜏𝜏 = −𝒌𝒌�𝜃𝜃ℎ𝑖𝑖𝑖𝑖 − 𝜽𝜽0�     (1) 
 

During STATE 1, torque assistance was applied 
independently to each leg for both hip flexion (pos.) and 
extension (neg.). As a key feature of the semi-active concept, 
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we also implemented a zero-impedance (ZI) output period, a 
control strategy where no torque or resistance applied to the 
user (STATE 2 – dark gray in Fig 1B). STATE 2 was 
implemented during swing phase starting when the hip angle 
reached 𝜃𝜃0 and ending when the hip angle reversed direction at 
peak hip flexion (Fig. 1B, bottom timeseries graphs). Without 
STATE 2, ZI output to the user, a fully passive device would 
resist user hip flexion, loading the spring while it applies 
extension torque, potentially impeding natural motion of the leg 
during swing [42]. Conceptually at the onset of STATE 2, the 
virtual Clutch 1 disengaged the spring from the user and Clutch 
2 engaged the spring to the motor. this prevented extension 
torque transmission to the user via Clutch 1 and isolated motor-
spring interaction through Clutch 2 The virtual motor then 

internally winded the exo spring (Fig. 1B, top schematic). 
Finally, at the time of maximum hip flexion in late swing, coiled 
spring energy would be released to the user (State 2 --> State 
1), by disengaging Clutch 2 and engaging Clutch 1, driving a 
pre-stance swing leg retraction to help propel the user via hip 
exo extension torque (Fig. 1B, bottom timeseries graphs). A 
ramping function was implemented at extension torque onset to 
ensure high torques were not applied in a rapid manner, which 
was uncomfortable to some pilot participants. Exo stiffness (k) 
(Nm/rad) modulates the total torque range, increasing both 
flexion and extension peak torques with higher stiffnesses (Fig. 
1B, red). Exo equilibrium angle (θ0) modulates the ratio 
between flexion and extension peak torques by shifting the 
torque along the vertical axis (Fig. 1B, blue). To account for 

 
Figure 1. Emulator-based evaluation of semi-active hip exoskeleton concept. A. We used a tethered, cable-driven hip exoskeleton to apply both extension 
and flexion assistance torque for each leg. Four offboard motors pulled on Bowden cables to apply flexion and extension to each leg. B. The applied torque 
profile was based on the concept of a semi-active device comprised of a motor, spring, and transmission with a two-state clutch mechanism. In State 1 (light 
gray), exoskeleton (exo) torque is transferred to the user according to a simple impedance (i.e., a virtual torsional spring) with a pre-set equilibrium angle (θ0) 
and stiffness (k) (Eq. 1). In this state, exo stiffness, k, modulated the magnitude of both flexion and extension torque assistance. Equilibrium angle, θ0, was 
calculated as a percentage of a 5-step average peak-to-peak (P2P) hip angle with peak extension = 0% and peak flexion = 100%. θ0 modulated the timing of 
flexion torque onset/offset (smaller θ0= later flexion torque onset), as well as the relative magnitude of extension vs flexion torque (smaller θ0= larger extension 
torque bias at ground contact). In State 2 (dark gray), zero-impedance (ZI; no torque assisting or resisting the user) mode was engaged, starting when the hip 
angle flexed passed θ0 (~70% gait cycle) and ending with peak hip flexion. Simultaneously, a motor loading action was used to coil the virtual spring, 
developing extension torque internally, which was released by a clutch set to unlock at the onset of late swing hip extension (~90% gait cycle)  
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changes in range of motion with assistance, equilibrium angle 
was denoted as a percentage of a 5-step average peak-to-peak 
(P2P) range of motion, with peak flexion as 100% and peak 
extension as 0%. As equilibrium angle increased, the user 
experienced higher peak flexion torque, a lower peak extension 
torque, and flexion assistance starting earlier and ending later 
in the gait cycle.  

We determined the ranges for stiffness and equilibrium 
angles based on pilot study data and peak torque. During pilot 
studies, we found parameter sets with higher than 60% 
equilibrium angle generated metabolic penalties compared to 
60% and lower values. Having the range of equilibrium angles, 
we then tuned stiffness ranges to elicit peak torques from 5 Nm 
minimum to approximately 50 Nm maximum. The maximum 
limit was chosen based on [43] as their metabolically optimal 
hip only peak torque spline assistance was around 0.6-0.7 
Nm/kg and the average weight of our pilot participants was 
around 70 kg. The inform increments between equilibrium 
angle and stiffness values were chosen to approximate 5Nm, the 
minimum change in torque seen to elicit metabolic cost 
differences around 4% or above.  

B. Study Protocol 
We recruited 10 healthy young adults to participate in the 

study (7M/3F; 67.76±10.62 kg, 172.2±9.4 cm). This study 
protocol was approved by the Georgia Institute of Technology 
Institutional Review Board (Protocol #: H18067 starting on 
June 14th, 2018) and all participants supplied voluntary consent 
to participate. For each participant, we implemented a 5-session 
protocol with three distinct purposes: (1) habituate the user to 
the device and measurement equipment, (2) create a metabolic 
cost to exoskeleton parameter landscape for a sweep of many 
(k- θ0) combinations across a functional range of walking 
speeds (1.3-1.6 m/s), and (3) independently validate user 

metabolic performance with optimal exo settings across speeds 
(Fig. 2).  
1) Habituation 

Session 1 involved user habituation to the device, the 
controller, and metabolic measurement system (explained in 
next section). Habituation, at least 25-30 mins, is necessary for 
the user to acclimate to wearing the exo and to develop efficient 
walking patterns utilizing assistance [44, 45]. To accommodate 
for the variety of assistance profiles the user would experience 
during the sweep sessions, we extended the habituation session 
to 60 minutes. Walking speed was chosen as the first of the 
randomized walking speeds (to be used as the sweep order in 
Sessions 2-4). Users first walked at a zero-impedance (ZI) 
condition (no assistance/resistance applied for the entire gait 
cycle), then at 5 randomized exo spring parameter sets ([50,25], 
[50,45], [75,35], [100,25], & [100,45] with [stiffness k, in 
Nm/rad, equilibrium angle θ0 in % P2P range of motion]) for 10 
minutes each (Fig. 2, left).  
2) Exo Spring Parameter Sweeps per Speed 

To measure how metabolically optimal exo control 
parameters changed across walking speeds, we swept all 
combinations of 5 stiffness values (k = 30, 52.5, 75, 97.5, & 120 
Nm/rad) and 6 equilibrium angles (θ0 = 10, 20, 30, 40, 50, & 
60%) at each of three walking speeds (1.0, 1.3, and 1.6 m/s) in 
randomized order (Fig. 2, middle). Each parameter set and 
initial ZI condition was applied for 2 minutes while we 
measured metabolic rate and lower-limb muscle 
electromyography (EMG). To determine the metabolically 
optimal exo spring parameter set for each speed, a metabolic 
cost - exo parameter landscape was created using a 2nd order fit 
across stiffness, k, and a 3rd order fit across equilibrium angle, 
θ0, a multidimensional application of [46]. Pilot testing revealed 
that this was the lowest order fit on each parameter that 
provided reasonably low error without overfitting. We then 
analytically solved for the k-θ0 parameter combination that 

 
Figure 2.  Multi-session protocol to find optimal impedance parameters across speeds. The experimental protocol was split into 5 sessions. Session 1 (left) 
explored 5 spring parameter combinations and zero-impedance (ZI) for 10 minutes each, allowing the user to acclimate to walking with hip exo assistance 
at the first parameter sweep speed. Sessions 2-4 (middle) tested x30 parameter sets spanning the full range of k- θ0 impedance control space while recording 
users’ metabolic rate and electromyography. A metabolic cost to exo parameter surface was created for each walking speed and the parameter set that 
minimized metabolic cost was used as the optimal for that speed (user-dependent). During Session 5 (right), users walked at all three speeds with zero-
impedance and the user-dependent optimal condition for that speed to validate results. 
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minimized the metabolic rate in the landscape and used this 
optimal set for validation. We pilot tested real-time or 
“body/human-in-the-loop” protocols using online optimization 
algorithms for this study [47, 48] but did not choose them as 
they would not consistently sample cost across the entire 
parameter space or provide optimal parameters within a lower 
number of samples for this lower multidimensional problem. If 
there were 3 or more parameters, we believe an online 
optimization algorithm would provide a more rapid optimal 
solution than our proposed method. 

We note, for most participants, the optimal (k-θ0) set was in 
between sweep values and thus was not experienced by the user 
before the validation session.  
3) Validation 

The final session (Session 5) was used to compare the 
metabolically optimal exo parameter set for each speed for each 
individual (user-dependent) to ZI at that speed (Fig. 2, right). 
Testing by speed was done in the same randomized order as the 
sweeps, completing all conditions at that speed then moving to 
the next. Each condition lasted 5 minutes while we measured 
metabolic rate and lower-limb muscle electromyography 
(EMG).  

C. Metabolic Cost 
Metabolic cost was measured via indirect calorimetry. 

Breath-by-breath oxygen consumption and carbon dioxide 
production were measured and used to calculate body mass 
specific gross metabolic rate (W/kg) using the Brockway 
Equation [49]. For the exo parameter sweep sessions (Session 
2-4), steady-state metabolic rate was estimated as the asymptote 
of a first order fit to 2 minutes of data [50]. For the validation 
session (Session 5), steady-state was calculated as the average 
metabolic rate from the last minute of each 5-minute bout. We 
conducted a metabolic cost comparison between user-
dependent and user-independent impedance parameters, which 
we detail in Section IIE. We note, due to an equipment 
malfunction, the zero-impedance (ZI) trial for one participant 
during the 1.6 m/s validation session was only 3.5 minutes long 
due, so the average of the last 30s of the trial was used for the 
steady state metabolic rate. Study wide, we computed the 
percentage difference in metabolic rate using the ZI condition 
from that same session as baseline.  

D. Electromyography 
Muscle activity was measured via surface electromyography 

(EMG) for eight muscles: tibialis anterior (TA), medial 
gastrocnemius (MG), soleus (SOL), vastus medialis (VM), 
rectus femoris (RF), biceps femoris (BF), gluteus maximus 
(GMa), and gluteus medius (GMe). EMG sensors (Delsys, Inc.) 
were placed over each muscle on the left leg according to 
standard methods [51]. 

Raw EMG signals were processed through a bandpass 
Butterworth filter with cutoff frequencies of 20 and 400 Hz 
before being rectified. Each rectified signal was normalized by 
dividing by the peak magnitude of the corresponding signal 
(same speed, same muscle) from the zero-impedance (ZI) trial. 
Using ground reaction force (GRF) measurements, the EMG 
signals were then clipped to only include full strides in the 
analyses.  

Next, each processed signal was integrated with respect to 
time; and the magnitude of the time-integral was divided by the 
total time of the processed signal to get the average normalized 
muscle activity for that trial. Then, to calculate the change in 
muscle activity due to each exo control parameter set, we 
subtracted the average muscle activity from the corresponding 
ZI trial in that session. For one participant walking in the 1.3 
m/s condition, data from the ZI trial had an excessively low 
signal-to-noise ratio, so no analysis was done with the 
participant for that speed.  

E. User-dependent vs. user- independent comparisons 
Both user-dependent and user-independent approaches were 

used to report optimal exo parameter sets and the associated 
changes in metabolic cost across walking speeds (e.g., see Fig. 
3). User-dependent measures (both optimal exo parameter sets 
(k-θ0) and the estimated change in metabolic cost (∆ % from 
zero-impedance (ZI)) were defined using the global minimum 
of the fit to each individual user’s metabolic cost landscape 
from the sweep grid points (Supp. Fig. 1) and then averaged 
across participants. This approach accounts for each individual 
user’s unique relationship between exo assistance parameters 
and metabolic cost while decreasing biasing effects from noisy 
metabolic measurements and estimations. User-independent 
measures were defined using a single across-participant average 
metabolic cost landscape in exo parameter space (k-θ0). Thus, 
the user-independent metabolic cost minimum (∆ % from ZI) 
and the exo parameters that generated it (k-θ0) were single 
values without any variance. As such, the user-independent 
approach assumes a ‘generic’ average user, and effectively 
smooths differences between participants, keeping only the 
major trends across participants intact.  

F. Statistical analyses 
We set out to examine whether the metabolically optimal hip 

exo parameters could reduce gross metabolic rate compared to 
zero-impedance (ZI) at each walking speed (Hypothesis 1); and 
whether the optimal exo parameters were different for different 
speeds (Hypothesis 2). Hypothesis 1 was tested using three 
separate within-speed, one-factor repeated measures ANOVA 
analyses (factor: exo condition: ZI, user-ind., user-dep., 
validation) (Fig. 3A) with pairwise post hoc comparisons using 
a Bonferroni correction. Hypothesis 2 was tested using a single, 
two-way ANOVA across speed and exo condition (factors: 
speed: 1.0, 1.3, 1.6 m/s; exo condition: user-ind., user-dep.) 
(Fig. 3B, C).  

A post-hoc linear regression analysis was performed to 
examine the relationship between changes in users’ muscle 
activity and metabolic cost due to exo assistance (i.e., ∆’s from 
ZI). The muscles used in the final linear regression were 
selected by first conducting regressions for each muscle, one-
by-one, in a stepwise fashion. At each step, the muscle that 
yielded the highest increase in the adjusted r-squared of the 
overall fit was added to the regression (akin to sequential 
forward selection), yielding an ordering that produced the 
highest combined adjusted r-squared fit. This process was 
repeated until all eight recorded muscles were used in the 
regression (Fig. 6, top). The combination of four muscles with 
the highest total adjusted r-squared fit was used for further 
analysis. We constrained the linear regression to have positive 
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coefficients for each muscle; however, the value of the bias 
term was unconstrained. The participant-average fit equation, r-
square, and p-value were computed using the fitted change in 
muscle activity vs. change in metabolic cost data at each 
walking speed (Fig. 6, bottom).  

III. RESULTS 

A. Metabolic Cost 
Gross metabolic rate was significantly reduced with optimal 

semi-active hip exoskeleton impedance control settings (k-θ0) 
for all walking speeds during sweep sessions, but not in the 
validation session (Fig. 3). During parameter sweep sessions, 
when compared to the zero-impedance (ZI) condition, user-
dependent optimal parameters reduced gross metabolic rate 
from ZI by (mean ± standard deviation): -9.1 ± 5.7% (p < 0.001) 
at 1.0 m/s, -12.2 ± 5.2% (p < 0.001) at 1.3 m/s, and -9.7 ± 3.7% 
(p < 0.001 ) at 1.6 m/s. (Fig. 3A (black), Supp. Fig.1)  User-
independent analysis indicated smaller but still significant 
metabolic reductions from ZI at all but the fastest walking 
speed: -6.5 ± 4.7% (p = 0.021) at 1.0 m/s, -9.8 ± 1.3% (p = 
0.001) at 1.3 m/s, and -5.4 ± 5.5% (p = 0.098) at 1.6 m/s (Fig. 
3A (dark gray), Fig. 5, right column).  

Direct comparison of optimal hip exoskeleton impedance 
parameters indicated larger reductions in metabolic rate for the 
user-dependent versus user-independent settings for the fastest 
but not the slower speeds: p = 0.054 at 1.0 m/s, p = 0.115 at 1.3 
m/s, and p = 0.027 at 1.6 m/s (Fig. 3A, black versus dark grey). 

During the validation test sessions (i.e., a re-test of each 
user’s speed-dependent best exoskeleton parameters from 
sweeps (see Supp. Fig. 1)), we found no significant reduction 
in gross metabolic rate from ZI at any walking speed: -2.1 ± 
4.2% (p = 1.00) at 1.0 m/s, -4.0 ± 6.7% (p = 0.65) at 1.3 m/s, 
and 4.5 ± 5.7% (p = 0.24) at 1.6 m/s.  

B. Metabolically Optimal Exoskeleton Impedance Control 
Parameters  

The hip exoskeleton impedance control parameters (k-θ0) that 
minimized metabolic rate were highly variable across 
participants and showed no significant differences across 
walking speed (Fig. 3 B&C; Fig. 5, right column; Supp. Fig. 1). 

Optimal stiffness (k) ranged between 40-80 Nm/rad (User-
dependent (mean ± standard deviation): 44.60 ±23.01 Nm/rad 
at 1.0 m/s; 61.75±36.45 Nm/rad at 1.3 m/s and 73.20±35.45 
Nm/rad at 1.6 m/s) and increased with walking speed, albeit 
insignificantly (ANOVA: p = 0.101) (Fig. 3B, black; Fig. 5, 
right column). Optimal equilibrium angle (θ0) was relatively 
constant around 20% of the peak-to-peak hip angle range of 
motion (User-dependent: 22.4±13.9 at 1.0 m/s; 20.4 ±7.6 at 1.3 
m/s and 18.1±9.43 at 1.6 m/s) and tended to decrease (i.e., 
became more extension biased) with increasing walking speed 
(ANOVA: p = 0.707) (Fig. 3C, black; Fig. 5, right column). 

The significant amount of variability between participants 
for both optimal stiffness (k) (Fig. 3B, Supp. Fig. 1) and 
equilibrium angle (θ0) (Fig. 3C, Supp. Fig. 1) was reflected in 
differences between user-dependent and user-independent 
optimal values, especially for stiffness (k) at low walking 
speeds (Fig. 3. black vs. dark grey bars).  

C. Muscle Activity 
Muscle activity was reduced for a subset of muscles, local to 

the assisted joint, by metabolically optimal semi-active hip 
exoskeleton impedance control settings (k-θ0) for all walking 
speeds (Fig. 5, Fig. 6, bottom). Representative time-series data 
show that reductions in muscle activity were driven by the hip 
and knee extensors (GMa, BF, and VM, respectively) early in 
the gait cycle, the hip flexors in early swing (RF) and the ankle 
plantarflexors (MG, SOL) at push-off. (Fig. 4).  

 
Figure 3. Metabolic benefit and optimal hip exoskeleton impedance parameters (k- θ0) across walking speed. A. Optimal metabolic benefit (∆% change from 
zero-impedance (ZI)) for each walking speed. User-dependent values (black) are mean ± SD taken from the fit to each individual participant’s metabolic cost 
landscape (see Supp. Fig. 1). User-independent value (dark gray) is taken from the grid point that yielded the minimum ∆ metabolic rate from ZI for the 
metabolic cost surface fitted to the across-participant average data (hence no SD). Validation values (light gray) are from a follow-up test session using each 
participant’s user-dependent minimum metabolic cost parameter set (k- θ0) at each speed. B. Optimal exo stiffness, k, (Nm/rad) and C. equilibrium angle, θ0, 
(%P2P) for each walking speed (m/s). User-dependent (black) and user-independent (dark gray) follow same convention as A. Statistically significant 
differences per speed from ZI are indicated by “#” and difference between conditions per speed are indicated by “*” 
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Stepwise, iterative regression analysis revealed that only the 
four most significant muscles were necessary to characterize 
the relationship between changes in metabolic cost and changes 
in muscle activity, as the adjusted r-squared value did not 
meaningfully increase when more than four muscles were 
included in the model (Fig. 6, top).  

The muscles that most influenced predicted changes in 
metabolic rate from changes in muscle activity due to hip 
exoskeleton assistance depended on walking speed. Iterative 
linear regression indicated: GMa, BF, VM, GMe at 1.0 m/s; BF, 
VM, RF, and GMe at 1.3 m/s; and BF, GMa, VM, and SOL at 
1.6 m/s (Fig. 6, top). BF and VM were present at all speeds; 
GMa and GMe present at 2 speeds each. 

Participant average fits of the 4 ‘best’-muscle linear 
regression models indicated a significant relationship 
(p<0.0001) between changes in muscle activity and changes in 
gross metabolic rate due to hip exoskeleton impedance control 
when compared to zero-impedance (ZI) for all walking speeds 
(Fig. 6, bottom). Correlations were strong at all speeds with r-
squared values of 0.65, 0.88 and 0.70 at 1.0, 1.3 and 1.6 m/s, 
respectively. 

D. Data Archive 
The study data set can be found at: 
https://sites.gatech.edu/hpl/archival-data-from-publications/. 

IV. DISCUSSION 
We used a lab-based emulator to evaluate a semi-active hip 

exoskeleton concept (i.e., motor, spring, clutch system) (Fig. 1) 
and measured the physiological response of human users to 
examine whether: (i) optimal impedance settings (spring 
stiffness, k and equilibrium angle, θ0) could reduce metabolic 
cost across a range of walking speeds (1.0-1.6 m/s), and (ii) 
whether impedance settings (k, θ0) for metabolically optimal 
performance depended on walking speed (Fig. 3) .  

First, we hypothesized that walking with a hip exoskeleton 
using metabolically optimal impedance settings (k, θ0) would 
provide metabolic benefit compared to zero-impedance (ZI) 
mode at each speed. Indeed, the user-dependent parameter set 
with the lowest metabolic cost provided significant benefit that 
ranged from 9-12% depending on walking speed (Fig. 3A, 
Supp. Fig. 1). Second, we hypothesized that the metabolically 

 
Figure 4. Muscle activity time-series for the hip exoskeleton impedance parameters (k- θ0) with the lowest (best) metabolic cost and zero impedance (no 
assistance or resistance applied to the user). Representative gait cycle (0% heel strike, 60% end stance, to 100% end swing) averaged muscle activity taken 
from surface electromyography records for Participant 9 during the 1.3 m/s exo parameter sweep session. Black curves are from the zero-impedance condition 
and red curves are from the condition with exo parameters that were metabolically optimal (k=120 Nm/rad and θ0= 13% P2P). Muscle activity was recorded 
from 8 lower limb muscles (ordered from distal-to-proximal, anterior-to-posterior): tibialis anterior (TA), medial gastrocnemius (MG), soleus (SOL), vastus 
medialis (VM), rectus femoris (RF), biceps femoris (BF), gluteus maximus (GMa), and gluteus medius (GMe). The optimal assistance strategy showed 
reduced hip and knee extensor (e.g., GMa, BF, and VM) activity in early stance and reduced hip flexor activity in early swing (e.g., RF) as well as reduced 
plantarflexor activity at push-off (e.g., SOL and MG). 
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optimal impedance parameters (k, θ0) would change across 
walking speed, mirroring physiological increases in hip joint 
quasi-stiffness and peak extension moment with speed [15]. 
Trends in our data supported this idea, as the optimal stiffness 
(k) increased from ~40 N-m/rad to ~80 N-m/rad (Fig. 3B) and 
the optimal equilibrium angle θ0 decreased from >20% to <20% 
of the P2P hip angle (i.e., larger extensor torque bias) (Fig. 3C) 
as speed increased from 1.0 to 1.6 m/s. 

Optimal hip exoskeleton impedance parameters (k, θ0) 
followed observed trends in biological moments and quasi-
stiffness observed in humans walking at faster and faster 
speeds. Physiological hip moments increase in both extension 
and flexion with increasing walking speed [10, 52]. This 
increase in peak-to-peak moment is accompanied by an 
increase in the flexion quasi-stiffness of the joint, or the ratio 
change in hip joint moment to change in hip joint angle during 
early swing [7]. Our metabolically optimal hip exo stiffness (k) 
also increased with speed, causing higher peak flexion and 
extension hip exo assistance torques. Similar trends have been 
reported for passive elastic ankle exoskeletons, where the 
metabolically optimal stiffness also follows physiological 
changes in ankle joint quasi-stiffness with increasing walking 
speed [9], [20]. More broadly, these results suggest that semi-
active exoskeletons design that rely on spring-like elements 
might be nominally set to match trends in the physiological 
quasi-stiffness of the target joint across locomotion modes (e.g., 
surface incline, or roughness). Conversely, human-in-the-loop 
optimizations of powered (not semi-active) exoskeletons to 
maximize metabolic cost savings while walking has shown that 
non-physiological torque profiles are optimal for each lower-
limb joint [5, 9, 45, 53]. Perhaps semi-active devices, with both 
powered and passive elements, should take inspiration from 
both physiological and optimized torque/impedance 
information to provide the most benefit to users. 

Notably, speed dependent shifts in optimal hip exoskeleton 
impedance parameters (for k or θ0) did not reach statistical 
significance. This was mostly because of high variability in 
optimal impedance settings between participants (Fig. 3B, C; 
Supp. Fig. 1), and highlights the potential importance of 
focusing on tuning exo control parameters to each individual 
user to maximize performance (i.e., user-dependent controller 
settings). Indeed, differences between hip exo impedance 
parameter (k, θ0) - metabolic cost landscapes derived using a 
user-dependent (i.e., per-each individual, or customized) 
(Supp. Fig. 1) versus a user-independent (i.e., averaged across-
individuals or generalized) (Fig. 5) analysis approach points to 
the potential benefit of tuning assistance to each unique user 
(i.e., personalized control). For example, for the metabolically 
optimal stiffness (k), the user-dependent values increased 
steadily with walking speed while the user-independent values 
only appeared to increase at 1.6 m/s (Fig. 3B). This suggests 
that the effect of increased stiffness (k), (i.e., higher hip exo 
torque for both flexion and extension) did not yield a large 
generalized metabolic benefit for most users across speed, but 
instead, a subset of users benefited greatly from increased 
stiffness (k), when moving from 1.0 to 1.3 m/s (Supp. Fig. 1, 
Participants 4, 7, 8, 9). Thus, using a semi-active device hip exo 
with stiffness tuned for the average user (i.e., user-independent) 
at intermediate speed would leave some users with a glaring 
lack of metabolic benefit. Indeed, user-dependent assistance 

tended to provide more metabolic benefit than user-independent 
stiffness at every walking speed (Fig. 3A). Other studies 
comparing user-dependent (customized) vs. user-independent 
(generalized) torque profiles with powered ankle exoskeletons 
also show increased benefits from a user-dependent approach - 
both for increasing preferred walking speed [54] and reducing 
metabolic cost [5, 45] compared to a user-independent ‘one-
size-fits all’ approach. Taken together, these data suggest that 
perhaps commercial exoskeletons could apply a generalized 
‘best’ assistance profile for ‘out-of-the-box use’ but that control 
settings should then be customized per user to provide highest 
possible benefit. 

Muscles ultimately consume the metabolic energy that 
moves us, and exoskeletons reduce metabolic cost principally 
by reducing muscle force and activation [55-57]. Our data 
strongly support this idea, as changes in activity of the lower-
limb muscles had strong correlation with changes in metabolic 
cost due to torque assistance from our semi-active hip 
exoskeleton concept (Figs. 5, 6). The strength of the fits from 

 
Figure 5. User-independent changes in muscle activity and metabolic cost 
across hip exoskeleton impedance parameter space (k-θ0): Across-
participant averaged (i.e., user-independent) multidimensional polynomial 
fits to sampled percentage change (red= increase; blue= decrease from the 
zero-impedance (ZI) condition) for each exoskeleton impedance parameter 
setting (a 5x6 stiffness (k) vs. equilibrium angle (θ0) grid space) at each 
walking speed (1.0 m/s (top row), 1.3 m/s, 1.6 m/s (bottom row)). Columns 
represent different outcome measures. (Left) Total muscle activity from the 
muscle with the best linear regression fit to metabolic cost (Best Muscle), 
(Middle) Linear regression fit using the 4 muscles with the best combined 
fit to metabolic cost (Linear Regression), and (Right) metabolic cost. The 
muscles selected per speed for the Best Muscle and Linear Regression fits 
can be found in Fig. 5 top row. The method of selecting muscles for the 
linear regressions is discussed in Section IIE. In general, a semi-active hip 
impedance controller with low stiffness and equilibrium angle working at 
an intermediate walking speed had the most benefit. Study-wide, changes 
in muscle activity corresponded well with changes in metabolic rate. 

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2022.3188482

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 07,2022 at 02:07:01 UTC from IEEE Xplore.  Restrictions apply. 



our linear regression analyses at all walking speeds (Fig. 6, 
bottom) supports the validity of using a multi-channel surface 
electromyography (EMG) approach to model metabolic cost of 
exoskeleton users rather than direct measurements via indirect 
calorimetry [58, 59]. Using changes in EMG as a proxy for 
changes in metabolic cost could allow for faster on-line tuning 
of exoskeletons control parameters than what is offered by 
traditional human-in-the loop approaches. 

Changes in activity of the muscles spanning the hip joint 
(e.g., GMa, GMe, BF, RF) were shown to be most significant 
in predicting changes in metabolic cost (Fig. 5, top); perhaps 
not surprising given the primary action of the exo is about the 
hip. Indeed, many other studies have shown that when robotic 
exoskeletons target the knee or ankle joint, the muscles that are 
more closely associated with those joints tend to respond most 
and drive changes in users’ metabolic cost [8, 60, 61]. However, 
it is interesting to note that hip assistance also helped reduce 
activity in the knee extensors (VM) during early stance and the 
plantarflexors (SOL, MG) in late stance (Fig. 4), re-
emphasizing results from previous studies showing that exos at 
the hip [62] and ankle [63] can have non-local effects on muscle 
effort.  

Metabolic benefit shown for optimal semi-active hip 
exoskeleton parameters (k, θ0) of the metabolic cost landscape 
across parameters from the comprehensive sweep sessions did 

not transfer to the validation session for any walking speed (Fig. 
3A). We believe the lack of translation was due to the limited 
time given for re-habituation to optimal exoskeleton assistance 
from the sweep sessions at each walking speed. Habituation to 
exoskeleton assistance can occur in as little as 20 minutes [8, 
44, 64, 65] but on average probably takes much longer, 
especially for metabolic rate to reach a new-steady state [45]. 
Much less is known about how habituation persists across 
multiple use-sessions separated by a significant time (i.e., 
retention form one session to another) and/or how long is 
needed to re-habituate. Our results provide some evidence that 
re-habituation may be crucial. One could posit that our results 
from the sweep session were biased by measurement noise 
inherent when using indirect calorimetry to measure metabolic 
rate and further exacerbated by 2-minute estimations of steady-
state cost, rather than effects of the exoskeleton control 
parameters themselves. To avoid this problem, we fit a multi-
polynomial surface to the change in metabolic rate versus zero-
impedance (ZI) across the grid of exoskeleton impedance 
parameters (k, θ0), and then selected the optimal parameters 
based on the estimated metabolic minimum of the fit. Thus, the 
optimal set (k, θ0), was influenced by all data points in the 
measurement set that generated fitted surface, decreasing bias 
from outliers and/or measurement noise (assumed to be 
normally-distributed). Further, the difference in metabolic rate 

 
Figure 6. Association between changes in users’ lower-limb muscle activity and metabolic cost across hip exoskeleton impedance parameter space (k- θ0): 
(Top) Participant average r-squared and adjusted r-squared values produced in an iterative regression process, relating changes in gait cycle averaged muscle 
activity (%) and changes in gross metabolic rate (%) compared to the zero-impedance (ZI) condition. On the x-axis, the muscles included in the model are 
cumulative from left to right, so that each muscle’s plotted r-squared point corresponds with a model that also includes all muscles in the preceding columns. 
Data are separated by walking speed (1.0 m/s, 1.3 m/s, 1.6 m/s form left to right). (Bottom) Linear regression fits using the four most significant muscles (i.e., 
four ‘best’ fits) per participant (colored lines) and the averaged across participants (black lines) for walking at 1.0 m/s, 1.3 m/s, and 1.6 m/s (left to right). Grey 
boxes highlight the areas in which there was a reduction in metabolic rate with respect to the corresponding zero-impedance (ZI) trial. Study-wide, changes in 
muscle activity corresponded well with changes in metabolic rate and participants who derived metabolic benefit had reduced muscle activity, especially at 
faster walking speeds. 
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from ZI for our optimal parameter sets is much larger than the 
noise associated with measures of metabolic rate from indirect 
calorimetry [50, 66]. Strong correlations between changes in 
metabolic cost and changes in muscle activity (R2=0.52-0.78) 
provide some physiological evidence that our measured 
changes were due to the exoskeleton and not measurement 
noise or bias.  

Our study was not without some limitations. First, our hip 
exoskeleton end effector hardware was designed to handle over 
200 Nm of torque applied at the hip [41]. Considering this, the 
added mass of the exoskeleton was much larger than what 
would be expected for a portable, autonomous semi-active 
version of the device. To accommodate for this difference, we 
compared gross metabolic rate in active impedance trials to that 
of wearing the exoskeleton in zero-impedance (ZI) mode, but 
we note that the bulk of the emulator may have affected the 
measured metabolically optimal assistance parameters (k, θ0) 
themselves. Second, our emulator did not perfectly reproduce 
the semi-active device due to safety adjustments made to the 
onset of extension torque and imperfect torque tracking. As 
mentioned in Section IIA, we implemented a ramp function to 
decrease the speed of extension torque onset from ZI mode as 
some pilot users found this uncomfortable. The consequence of 
this ramp was decreased peak extension torques. Root-mean-
squared-error of torque tracking across conditions was ~3Nm, 
which equated to <15% of peak-to-peak torque. We believed 
this was reasonable to conduct the study as torques generally 
followed the desired passive spring torque, but we acknowledge 
this does not perfectly emulate the proposed semi-active device. 
Last, this study was conducted on a treadmill rather than 
overground, which could have limited user adaptation via free 
adjustments in walking speed. Exoskeleton assistance has been 
shown to alter preferred walking speed along with changes in 
metabolic cost [24, 54]. Thus, it is possible that metabolic 
benefits could be higher for walking speeds outside the range 
we tested. future studies could explore optimizing the global 
cost of transport (i.e., energy consumption per distance 
travelled), where both metabolic rate and preferred walking 
speed can equally contribute. This scenario might better 
represent user behavior outside of the lab, as humans tend to 
select their preferred walking speed to minimize cost of 
transport [67] in real-time [68, 69]. In our future work, rather 
than using an in the lab emulator to perform brute force 
exoskeleton controller parameter sweeps during treadmill 
walking at fixed speed, we plan to conduct optimizations using 
autonomous devices outside the lab under real-world conditions 
that better represent an average user’s daily activities. 

V. CONCLUSION 
A tethered hip exoskeleton emulating semi-active hardware, 

via spring-like impedance control, can reduce metabolic cost by 
up to ~10% compared to zero-impedance (ZI) across functional 
walking speeds (1.3-1.6 m/s). Stiffer springs, with an 
equilibrium angle set to provide higher magnitude hip extension 
assistance throughout more of the gait cycle, tended to perform 
better at faster walking speeds. Tuning impedance control 
parameters to each individual user and longer training periods 
are likely to further improve performance. Local muscle 
activity (e.g., glutes, hamstrings) could be an important 

physiological input as a proxy for metabolic demand for online 
optimization of controller parameters to continuously minimize 
metabolic cost during unstructured, ‘real-world’ locomotion. 
This paves the way and provides crucial guidance for 
developing energy efficient, portable semi-active assistance 
strategies at the hip across walking speed.  
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