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Abstract

Background and objective

Dynamic muscle fascicle length measurements through B-mode ultrasound have become

popular for the non-invasive physiological insights they provide regarding musculoskeletal

structure-function. However, current practices typically require time consuming post-pro-

cessing to track muscle length changes from B-mode images. A real-time measurement

tool would not only save processing time but would also help pave the way toward closed-

loop applications based on feedback signals driven by in vivo muscle length change pat-

terns. In this paper, we benchmark an approach that combines traditional machine learning

(ML) models with B-mode ultrasound recordings to obtain muscle fascicle length changes in

real-time. To gauge the utility of this framework for ‘in-the-loop’ applications, we evaluate

accuracy of the extracted muscle length change signals against time-series’ derived from a

standard, post-hoc automated tracking algorithm.

Methods

We collected B-mode ultrasound data from the soleus muscle of six participants performing

five defined ankle motion tasks: (a) seated, constrained ankle plantarflexion, (b) seated, free

ankle dorsi/plantarflexion, (c) weight-bearing, calf raises (d) walking, and then a (e) mix. We

trained machine learning (ML) models by pairing muscle fascicle lengths obtained from

standardized automated tracking software (UltraTrack) with the respective B-mode ultra-

sound image input to the tracker, frame-by-frame. Then we conducted hyperparameter opti-

mizations for five different ML models using a grid search to find the best performing

parameters for a combination of high correlation and low RMSE between ML and UltraTrack

processed muscle fascicle length trajectories. Finally, using the global best model/hyper-

parameter settings, we comprehensively evaluated training-testing outcomes within subject

(i.e., train and test on same subject), cross subject (i.e., train on one subject, test on

another) and within/direct cross task (i.e., train and test on same subject, but different task).
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Results

Support vector machine (SVM) was the best performing model with an average r = 0.70

±0.34 and average RMSE = 2.86 ±2.55 mm across all direct training conditions and average

r = 0.65 ±0.35 and average RMSE = 3.28 ±2.64 mm when optimized for all cross-participant

conditions. Comparisons between ML vs. UltraTrack (i.e., ground truth) tracked muscle fas-

cicle length versus time data indicated that ML tracked images reliably capture the salient

qualitative features in ground truth length change data, even when correlation values are on

the lower end. Furthermore, in the direct training, calf raises condition, which is most compa-

rable to previous studies validating automated tracking performance during isolated contrac-

tions on a dynamometer, our ML approach yielded 0.90 average correlation, in line with

other accepted tracking methods in the field.

Conclusions

By combining B-mode ultrasound and classical ML models, we demonstrate it is possible to

achieve real-time tracking of human soleus muscle fascicles across a number of functionally

relevant contractile conditions. This novel sensing modality paves the way for muscle physi-

ology in-the-loop applications that could be used to modify gait via biofeedback or unlock

novel wearable device control techniques that could enable restored or augmented locomo-

tion performance.

1. Introduction

In recent years, approaches employing machine learning (ML) techniques to help extract

salient features from biomedical images have been rapidly growing to tackle the study and

diagnosis of diseases spanning across human physiological systems [1, 2]. Researchers have

successfully implemented ML based approaches to detect, classify, and measure volumes,

lengths, and other spatial features of anatomical structures, such as the heart, brain, lungs, and

muscles [3, 4]. Some advantages of these approaches over conventional manual measurements

or semi-automated image extraction algorithms include increased throughput, improved clini-

cal workflow, reduced health care costs, and the potential for real-time applications [5].

In clinical and basic physiology studies, B-mode ultrasound imaging has become the stan-

dard for measuring skeletal muscle architecture and dynamic length changes in vivo [6]. These

‘under the skin’ measurements of muscle anatomical structure and dynamic function have

gained popularity because they can help elucidate mechanisms of muscle force production and

energy use [7], that are difficult to uncover based on external measures due to decoupling

between limb-joint and muscle dynamics [8–10]. As such, ultrasound has proven crucial for

gaining insight into important physiological processes that are otherwise inaccessible through

traditional physiological sensing modalities including electromyography, motion capture, and

force ergometry. On the applied side, researchers have used ultrasound to study muscle struc-

ture-function in both healthy and pathological populations to understand physiological func-

tion and inform design of systems intended to provide movement assistance or rehabilitation

[11]. Surprisingly, despite the widespread use of this imaging modality and the cumbersome

and time-intensive nature of such manual approaches, hand-tracking images is still the gold

standard for obtaining muscle fascicle lengths and length changes non-invasively [6]. Manual
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tracking consists of going frame by frame and identifying the full extent of the selected fascicle

[12]. This is a tedious task and hence many algorithms have been developed in an attempt to

expedite and automate the process [13, 14]. Results from most of these tracking algorithms

indicate B-mode ultrasound is a reliable and repeatable method for measuring muscle fascicle

length changes in vivo [6, 13].

Despite current advancements, techniques are not yet widely available for ML based analy-

sis of muscle physiology with ultrasound. There is work leveraging ML strategies for the analy-

sis of specific skeletal muscle features [15–17], yet, to the best of our knowledge, most fail to

measure dynamic fascicle length changes through time, or are limited for real-time implemen-

tation due to required processing times, often a consequence of more involved deep learning

techniques [18]. Given ML’s success in interpreting a wide range of biomedical images, we

sought to apply ML to obtain real-time estimates of fascicle lengths from B-mode ultrasound

images. Ultrasound images have a number of artifacts including attenuation, scattering, and

refraction [15] that make automation, especially in real time, a formidable challenge. However,

ML strategies are tunable and can be optimized for specific applications. Moreover, once

trained, ML algorithm predictions can be ascertained rapidly, making real-time implementa-

tion feasible [19, 20].

One of the biggest challenges when implementing ML-based strategies is establishing a reli-

able and salient ground truth reference data set. Especially for physiological data—which tends

to have a large amount of natural variation, the ground truth set should be robustly diverse.

For human muscle data this manifests as a set of ultrasound image sequences recorded from

multiple participants, performing an array of functional tasks that can be used to train and test

ML-based image processing algorithms. To apply ML to extract muscle fascicle length esti-

mates from ultrasound images, manual labeling could be used to establish the ground truth

data set, but this would be tedious and extremely time consuming. Another approach is to

leverage the state of the art automated tracking system to accelerate the process and obtain a

‘ground truth’ that is both accurate and can be rapidly (e.g., in minutes not hours) established

[21, 22]. UltraTrack is the most commonly used tool in the literature for muscle length analysis

[6]. It leverages a Lucas-Kanade optical flow algorithm to track fascicles from one frame to the

next [23], and it reduces processing time from hours of hand-tracking to anywhere from 5 to

40 minutes depending on the length of the study and on how accurately the experimenter

implements its key-frame correction. This correction feature aims to minimize the drift effect

seen as error accumulates from frame to frame. There are some accuracy limitations to Ultra-

Track as discussed in recent work [14] (especially in longer studies), yet due to its ubiquity and

acceptable performance [6, 23], it seems an appropriate means of obtaining ground truth “on

the spot” for a given user + participant and task. Having said this, the absence of real-time

implementation capabilities remains a major limitation.

In this paper, towards developing a protocol that allows real-time measurement of muscle

fascicle length changes, we benchmark a hybrid framework that combines ML and func-

tional ultrasound to obtain real-time length changes from live images of human muscle in

dynamic conditions. We show B-mode ultrasound images of soleus muscle during different

locomotion-relevant tasks being fed to a number of different ML models yielding fascicle

length estimates with low error and high correlation when compared to UltraTrack pro-

cessed ground truth data. The resulting real-time, dynamic muscle imaging framework

promises to not only speed up post hoc processing and analysis of ultrasound images of in
vivo muscle contractile behavior, but also unlocks the possibility for novel muscle-in-the-

loop applications that use muscle states to drive biofeedback training and/or assistive/reha-

bilitation devices [24].
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2. Methodology

2.1. Experimental protocol

Six participants (3 male/ 3 female, age: 24 ± 4 years) voluntarily participated in this experiment

after providing written informed consent (Georgia Institute of Technology IRB Protocol

H17240). Participants had no current or previous significant lower-limb injury or gait pathol-

ogy. B-mode ultrasound data were collected for five 24-second tasks (Fig 1) with the ultra-

sound probe (Telemed, ArtUs EXT-1H, LV8-5N60-A2 probe) wrapped to the right calf with

3M Vetrap Bandaging Tape to obtain images of soleus muscle fascicles (Fig 2A). The probe

was aligned so that both aponeuroses were as close to horizontal as possible in the live ultra-

sound video feed. All data were collected by the same experimenter. Data were collected at 60

frames per second (fps); hence, each trial lasted approximately 24 seconds to reach the target

1400 frames we intended to capture. Note that on our computer (16 GB RAM), ultrasound

software EchoWaveII (Telemed) limited maximum frame capture count per trial to 1500

frames. In each frame, we captured a single B-mode ultrasound image (“frame” and “image”

are the same for our purposes and might be used interchangeably). (Fig 2A).

We selected five ankle movement tasks (Fig 1) to capture kinetic and kinematic conditions

spanning high and low muscle forces and high and low muscle displacements; an array that

captures muscle states experienced during natural movements (e.g., locomotion: stance

phase = high force, low displacement and swing phase = low force high displacement) [25].

For every participant the tasks were performed in the same order with at least 1 minute of rest

in between each as follows: a) constrained ankle flexion: while seated, participants performed

push-release loading cycles with their foot against the ground and no movement of their heels

or knees, b) free ankle dorsi/plantar/flexion: while seated, participants plantarflexed and dorsi-

flexed over a full range of motion with their foot in the air, c) calf raises: while weight-bearing,

participants cyclically raised and lowered their heels as far as they could d) walking: partici-

pants walked at 1.5 m/s on a treadmill (Tuff Tread, Inc.), and e) amix: participants were

encouraged to move their foot as desired while staying in place, but alternating weight-bearing

and foot in the air. For tasks a-c, participants were encouraged to practice the timing so that

they could perform around ~7 cycles of each task during the 24 seconds (3–3.5 Hz). Partici-

pants were offered breaks to rest between tasks, yet none required them.

Fig 1. Ankle movement tasks used to generate experimental data set of B-mode ultrasound images. Dynamic B-mode ultrasound data were collected from the

human soleus muscle for five ankle movement tasks with varying levels of force and displacement. Tasks were as follows: (a) (red) seated, constrained ankle

plantarflexion with cyclic pushes of the foot on the ground and legs held still, (b) (orange) seated, free ankle plantar/dorsiflexion with foot in the air, c) (green) weight-

bearing, calf raises with cyclic heel raises while standing in place, d) (blue) walking at 1.5 m/s on a treadmill, and e) (purple) a mix of directed movements while

standing in place with foot on the ground and in the air. Tasks were specifically chosen to elicit combinations of high/low muscle fascicle force and displacement to

provide a data set for training machine learning (ML) algorithms that had a high degree of variability. Task color coding is consistent throughout the paper.

https://doi.org/10.1371/journal.pone.0246611.g001
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Fig 2. Workflow from B-mode ultrasound image acquisition and processing to machine-learning (ML) model

training and real-time muscle length tracking. A) In each frame, a B-mode image containing human soleus muscle

fascicle (yellow line) is captured via ultrasound probe. B-C) Training and ground truth muscle fascicle length change

data sets are obtained via UltraTrack software. D-E) Images in each frame are cropped and down-sampled using

Python code to implement open-source functions. F) A machine learning (ML) model is trained using outputs from C
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2.2. Data processing

2.2.1. Muscle fascicle length ground truth. We used UltraTrack tracking software [21] to

process B-Mode images and define a fascicle length in each of the 1400 frames from every par-

ticipant performing each task (Fig 2B). We used UltraTrack’s automated fascicle tracking and

added key frame correction whenever appropriate to reduce drift at least twice per set to

ensure there were no outstanding errors. We used the first 1000 out of those 1400 images as

our muscle fascicle length training set (Fig 2C–2F) and the remaining 400 images to define a

ground-truth testing set for verifying performance (Fig 2C–2I). Traditionally, machine-learn-

ing (ML) model accuracy is assessed using random samples rather than the last portion of a

data set. The approach we chose here, to select the last portion of data set as ground-truth, was

done intentionally, to emulate the process that would be undertaken if we applied the frame-

work to obtain real-time measurements in a mobile laboratory setting.

2.2.2. Ultrasound image pre-processing. To reduce computational requirements and

increase processing speed, we cropped and down-sampled B-mode images into smaller matri-

ces (I in S1 File). First, we cropped them to focus on the soleus muscle, the largest of the calf

muscles and often a target for clinical intervention [26], and eliminated both superficial (i.e.,
gastrocnemius muscle) and deep regions (Fig 2D) of the image. We then down-sampled the

images at four different reduction rates using the “block_reduce” function from Scikit-Image,

an open-source image processing library for Python [27]. Down-sampling the 658 x 556 pixel

images yielded pixel matrices of 4 different sizes corresponding to each of the four down-sam-

pling rates, from we chose the heaviest down-sampling which yielded the smallest matrices per

image (S1 Table in S1 File).

2.2.3. Machine-learning (ML) model implementation. To train our machine learning

(ML) models (Fig 2F), we used 1) the first 1000 pixel brightness matrices representing the first

1000 images as our training data input (Fig 2E), and 2) the corresponding UltraTrack derived

muscle fascicle lengths for those 1000 images as our ground truth (Fig 2C). Once trained, we

inputted the remaining 400 matrices/frames from the test set to the ML model to estimate the

respective muscle fascicle lengths based on what the model learned from the first 1000. These

400 frames were fed sequentially (in the same order as captured) to emulate how the computer

would process real-time ultrasound images (Fig 2G) which yielded an output of pseudo-real-

time soleus muscle fascicle length estimates (Fig 2H). To clarify, we define pseudo-real time to

acknowledge that the data we ran through the workflow rubric described in Fig 2 was done

post-hoc in this instance. This was to allow us to examine and optimize multiple combinations

of algorithms and parameter settings since the actual real-time implementation cannot be vali-

dated in real-time non-invasively. Note that the suggested technique although capable of pro-

ducing real-time measurements as shown in S3 Video, will be limited mainly by hardware and

ML processing of B-Mode images (III in S1 File).

2.2.4. Machine-learning (ML) model and parameter optimization. Parameter settings

within a given machine-learning (ML) model can be tuned to optimize input-output perfor-

mance. We examined five ML models, both linear and non-linear, that were available in the

Scikit Learn library [28]: Lasso, Ridge, Linear Support Vector Regression (Linear SVR), Epsi-

lon-Support Vector Machine (SVM) with ‘rbf’ kernel, and Random Forest. For each ML

model we used the grid search method to test up to ~100 unique parameter combinations and

find optimal performance (II in S1 File). To optimize, we found parameter settings that

and E. G) Unique images not seen by the ML model in the training stage are fed into the ML model. H) The ML model

yields pseudo real-time muscle fascicle length measurements. I) Performance metrics are calculated (e.g., RMS error

and correlation), to compare ML-derived measurements to the ground truth.

https://doi.org/10.1371/journal.pone.0246611.g002
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simultaneously maximized correlation and minimized root mean square error (RMSE) of ML

processed vs. UltraTrack processed (i.e., ground-truth) muscle fascicle length change data. In

other words, we formulated an objective function where correlation and RMSE had equal,

non-dimensional weighting. Since correlation values span from 0 to 1 and RMSE values span

from 0 to variable numbers, we scaled the obtained RMSE values for each optimization to span

a 0 to 1 range. That is, we normalized the RMSE values by dividing absolute RMSE by the larg-

est observed across participants and tasks (= ~14 mm). Then, with both correlation and RMSE

on the same scale, we simply added the difference of 1 –the adjusted RMSE (to make lower val-

ues better) to the correlation value and selected the hyper parameters within each ML model

that yielded the largest sum (See Sec. 3.4 for application dependent changes to this formula-

tion). Once optimal hyperparameters for each ML model were selected, we were able to com-

pare ML model performance across conditions. Note that we also used this objective function

to select the best down-sampling rate and found that the heaviest down-sampling yielded the

best correlation/RMSE balance (I in S1 File). Hence, the results presented across ML models

are all from images reduced to matrices at the same lightly optimized rate (Fig 2E).

2.3. Machine-learning (ML) model evaluation

We selected Pearson’s Correlation Coefficient (r) and root-mean square error (RMSE) as our

two main evaluation metrics as they are regularly employed to assess accuracy in both ML and

physiology literature [13, 29]. Because our ML models always yielded the exact same results

when under the same training/testing conditions (i.e., deterministic input-output behavior),

the common Coefficient of Multiple Correlations (CMC) and Intraclass Correlation Coeffi-

cient (ICC) were not appropriate in this study. We instead focused on how the r and RMSE

values changed under different train-test scenarios and how these compared to accepted

ranges for ‘good’ performance from the literature. Generally, although application dependent,

we consider r� 0.35 as weak, 0.36 to 0.67 as moderate, and 0.68 to 1 as strong or very strong

correlation [30, 31]. The utility of RMSE largely depends on whether/how it is normalized to

account for the range over which the measurement can naturally vary. As a benchmark for

performance, we quantified how our RMSE in absolute muscle fascicle length compared to the

existing literature examining tracking of images containing fascicles of similar lengths (e.g.,
human soleus = ~30–50 mm at rest), which tend to have RMSEs under 10% of the mean length

[13, 14]. In addition, for qualitative comparison, we examined how these ML estimates com-

pared to the ‘ground-truth’ (= UltraTrack processed) in ‘real-time’ play-back mode by visualiz-

ing both signals simultaneously on a monitor to mimic what a user might see during

biofeedback applications (Fig 2I).

Using RMSE and Pearson’s Correlation Coefficient (r), we evaluated three potential muscle

fascicle B-mode ultrasound imaging data train-test use cases: a) direct training: in which we

trained the ML model and then tested it using data from the same participant and the same

task (e.g., train on participant #3 walking data to measure participant #3 during walking), b)

cross-participant training: in which we trained the ML model with data from a different partici-

pant than the one being tested (e.g., train on participant #6 walking data to measure participant

#3 during walking), and c) cross-task training: in which we trained the ML model on data from

the same participant but from a different task than the one being tested (e.g., train on partici-

pant #3 using heel raises to measure participant #3 during walking). Note that we used the

cross-task condition to measure only walking. We used the same train-test analysis protocol

for direct, cross-participant and cross-task cases in which, of 1400 total image frames per con-

dition, we used the first 1000 frames to train to ‘ground truth’, then the last 400 frames to test
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versus ‘ground truth’. Testing against ground truth meaning we calculated the correlation and

RMSE values between the 400 ground truth frames and the ML-model-predicted 400 frames.

3. Results and discussion

In this paper, for the first time, we were able to demonstrate the feasibility of ML algorithms

for obtaining accurate muscle fascicle length measurements from B-Mode ultrasound images

in real-time (III in S1 File, S3 Video). After optimizing each ML model (Lasso, Ridge, Linear

SVR, SVM, Random Forest) to simultaneously maximize Pearson’s correlation, r and mini-

mize RMSE with equal weighting across all movement tasks, we obtained the best performance

using SVM for both direct and cross participant training scenarios (Table 1). Note that we did

not implement a neural network since after preliminary testing non-linear models like Ran-

dom Forest, we did not see a significant performance increase. SVM yielded an average corre-

lation (r) of 0.70 ±0.34 with an average RMSE of 2.86 ±2.55mm when optimized for all direct

training conditions (Table 1a) and yielded an average correlation of 0.65 ±0.35 with an average

RMSE of 3.28 ±2.64mm when optimized for all cross-participant movement tasks (Table 1b).

Note that correlation value averages in all Tables are averaging all the corresponding sub-com-

ponents (e.g., in Table 1a we obtained correlation values for each of the models by averaging

the correlations obtained for every subject and every task with direct training for that model).

These results show moderate to strong correlation values comparable to previous reports doc-

umenting muscle fascicle length tracking algorithms. Indeed, our result demonstrates RMSE

of ~3mm or ~6% of the median fascicle length (= ~50mm) for most trials, which is in line with

the 10% RMSE seen in related studies [6, 13, 14]. It is important to note that we obtained simi-

larly strong results from all five ML models, indicating that, if properly tuned, many ML mod-

els have potential to generate accurate tracking of muscle fascicle length from B-mode images

without requiring deep learning. Given its overall best performance, we focus our analysis on

direct, cross-participant, and cross-task training for the optimized SVM ML model only.

3.1. Direct training

From direct training we obtained correlation averages of 0.90 for both the free ankle and calf

raises, 0.73 for constrained ankle, 0.52 for walking, and 0.41 for the random mix, all while hav-

ing RMSEs less than 4mm (Table 2a). Note that these values represent averages and that there

is considerable spread. We would recommend visual inspection of the results to help confirm

their usability. Pseudo real-time estimates as they would have been obtained if the system were

applied in real-time for one subject indicate that even in cases of moderate or low correlation

(<0.6) and/or higher RMSE (>4mm), it is evident that the ML algorithm is able to

Table 1. Machine learning (ML) model comparisons.

a. Direct Training Averages per Model b. Cross-Participant Training Averages per Model
CORR (r) RMSE (mm) CORR (r) RMSE (mm)

Lasso 0.68 ±0.37 2.76 ±2.38 0.50 ±0.35 2.72 ±2.82

Ridge 0.68 ±0.29 2.77 ±2.35 0.65 ±0.29 3.31 ±2.78

LinearSVR 0.69 ±0.32 2.73 ±2.30 0.55 ±0.30 2.73 ±2.72

SVM 0.70 ±0.34 2.86 ±2.55 0.65 ±0.35 3.28 ±2.64

Random Forest 0.60 ±0.29 3.65 ±2.91 0.49 ±0.30 3.44 ±2.21

Correlation is unitless, shown as CORR (r), Root Mean-Square Error (RMSE) shown in millimeters. Average correlations and RMSEs were obtained averaging all

corresponding subjects and tasks.

https://doi.org/10.1371/journal.pone.0246611.t001
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qualitatively track muscle fascicle lengths well, capturing major features like peaks and inflec-

tion points in time-series data (Fig 3).

We analyzed direct training scenarios separately with an eye toward using UltraTrack as a

rapid means of obtaining ground truth for the ML model to be trained for specific movement

Fig 3. Muscle fascicle length versus time from optimized ML algorithm with direct training across tasks. Subplots show raw output of muscle fascicle length

(mm) versus time (seconds) estimated using B-mode ultrasound images fed through a support vector machine (SVM) machine-learning (ML) model with

optimized hyperparameters for a representative participant X during several cycles of a given ankle movement task (e.g., constrained ankle = red (top);

mix = purple (bottom)). In each case, the SVM ML output was generated following a training procedure using image data from the same participant X and same

task as that used to measure muscle fascicle length in the test participant X (i.e., direct task to task training). Muscle fascicle lengths derived from inputting the

same B-mode images into UltraTrack (UT) software (gray) are included as ‘ground-truth’ to give context regarding correlation and RMSE across tasks. Note that

scaling of Y-axes differs from panel to panel.

https://doi.org/10.1371/journal.pone.0246611.g003

Table 2. Ankle movement task comparisons for SVM across training schemes.

a. Direct Training Averages per Task b. Cross-Participant Training Averages per
Task

c. Cross-Task Training Averages for
Walking

CORR (r) RMSE (mm) CORR (r) RMSE (mm) CORR (r) RMSE (mm)
Constrained Ankle 0.73 ±0.34 0.84 ±0.58 0.62 ±0.33 0.85 ±0.66 0.20 ±0.19 2.45 ±0.89

Free Ankle 0.90 ±0.32 3.67 ±3.01 0.81 ±0.35 4.31 ±3.14 0.19 ±0.17 2.19 ±0.92

Calf Raises 0.90 ±0.30 2.39 ±1.19 0.89 ±0.33 2.56 ±1.31 0.24 ±0.16 2.47 ±1.13

Walking 0.52 ±0.22 2.08 ±1.45 0.29 ±0.18 2.22 ±1.38 - -

Mix 0.41 ±0.26 2.45 ±3.37 0.38 ±0.26 3.19 ±3.48 0.26 ±0.21 2.32 ±1.20

Average 0.69 ±0.29 2.29 ±1.92 0.60 ±0.29 2.63 ±1.99 0.22 ±0.18 2.36 ±1.03

Correlation is unitless, shown as CORR (r), Root Mean-Square Error (RMSE) shown in millimeters. Average correlations and RMSEs were obtained averaging all

corresponding subject combinations.

https://doi.org/10.1371/journal.pone.0246611.t002
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tasks related to locomotion. The process of setting up the ultrasound probe, collecting B-mode

ultrasound data in each movement task, processing data in UltraTrack and then training the

ML model onsite so that it is ready to make real-time measurements was on average accom-

plished in approximately 20–30 minutes. This opens opportunities for researchers to train

their ML models on a specific individual patient / participant in a specific movement task right

before the experiment or rehabilitation session starts. This innovation could potentially elimi-

nate the need for robust one-size fits all solutions that work between different sessions, indi-

viduals, and movement conditions.

3.2. Cross-training

From cross-participant training we obtained correlation averages >0.80 for both free ankle

and calf raises (0.81 and 0.89 respectively), 0.62 for constrained ankle, 0.29 for walking, and

0.38 for the random mix movement tasks while having RMSEs less than 4mm for all except

the free ankle condition (Table 2b). We believe cross-participant training is successful in part

due to the magnitude of the pre-processing down-sampling which likely removes unnecessary

details and differences between individuals while keeping salient information needed to extract

accurate muscle fascicle length measurements. As with direct training, even in scenarios like

walking, where formal correlation values are not very high (<0.7), ML derived muscle fascicle

length measurements qualitatively follow the ground truth data across all participants. (Fig 4).

Fig 4. Muscle fascicle length versus time from optimized ML algorithm with cross-participant training in the walking task. Subplots show

raw output of muscle fascicle length (mm) versus time (seconds) estimated using B-mode ultrasound images fed through a support vector

machine (SVM) machine-learning (ML) model with optimized hyperparameters for a representative subject X during several cycles of the

walking task. In each case, the SVM ML output was generated following a training procedure using image data from walking in each of the other

participants (e.g., participant #1 = dark blue, participant #5 = light blue) and then used to measure muscle fascicle length in the test participant X

(i.e., cross participant training). Muscle fascicle lengths derived from inputting the same B-mode images into UltraTrack (UT) software (gray)

are included as ‘ground-truth’ to give context regarding correlation and RMSE across tasks.

https://doi.org/10.1371/journal.pone.0246611.g004
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From cross task training we obtained an average correlation of 0.22 ±0.18 and average

RMSE of 2.36 ±1.03mm when measuring walking data after training our SVM ML model with

data from the other movement tasks (Table 2c). These correlation values are lower than direct

or cross-participant training since each task covers a different combination of ankle joint

range of motion, soleus muscle loading, and overall noise. With under 20 seconds of training

data (1000 frames), it was challenging to generalize training and make accurate muscle fascicle

length measurements in walking. However, we observe once again that despite low formal cor-

relations (<0.6) our ML based tracking still generates useable data that captures qualitative fea-

tures of ground truth quite well. (Fig 5). After a closer look at our data, we observe that when

compared to cross-participant or direct training, correlation averages for cross-task training

are much lower due to a more frequent lack of correlation. Thus, despite potential conve-

nience, there is a larger risk of poorer muscle fascicle length measurements when employing

cross-task training vs. the other approaches (Table 2).

In practical terms, our data suggest that researchers using conventional ML models (e.g.,
SVM, Lasso etc.) to extract muscle fascicle length measurements should aim to train their

model on each individual and on the movement task that they intend to measure (i.e., direct

calibration) whenever possible if high accuracy is required. We note, however, that the despite

trading-off time savings or out-of-lab use for loss of accuracy (i.e., lower correlation or RMSE),

cross-training might still be a viable option depending on the demands of the specific applica-

tion (see Table 2 and Sec. 3.4). Interestingly, our data indicate that ML algorithms appear to

be more sensitive to changes in muscle fascicle displacement magnitude and/or loading (i.e.,
across ankle movement tasks) (Fig 3) than changes in the exact muscle features distinctive of

each individual (i.e., across participants) (Fig 4). This from the significantly higher correlations

Fig 5. Muscle fascicle length versus time from optimized ML algorithm with cross-task training in the walking task. Subplots show raw

output of muscle fascicle length (mm) versus time (seconds) estimated using B-mode ultrasound images fed through a support vector machine

(SVM) machine-learning (ML) model with optimized hyperparameters for a representative participant X during several cycles of a given ankle

movement task (e.g., constrained ankle = red (top); mix = purple (bottom)). In each case, the SVM ML output was generated following a training

procedure using image data from each of the other tasks (e.g., constrained ankle = red, mix = purple) and then used to measure muscle fascicle

length during walking in the test participant X (i.e., cross-task training). Muscle fascicle lengths derived from inputting the same B-mode images

into UltraTrack (UT) software (gray) are included as ‘ground-truth’ to give context regarding correlation and RMSE across tasks.

https://doi.org/10.1371/journal.pone.0246611.g005
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cross-participant vs cross-task (Table 2). Hence, when given the choice, cross-participant

training is preferable over cross-task training.

3.3. Muscle fascicle length tracking performance

When applying ML to extract information from data, it is important to consider differences

between the ‘ground truth’ used for training the algorithm and testing its measurement accu-

racy versus the underlying objective state of the desired sample, in this case muscle fascicle

lengths. The ‘ground-truth’ which most muscle fascicle tracking algorithms are tested against

uses data that are hand-tracked in each image frame. Although hand-tracked imaging data still

does not perfectly capture actual in vivo fascicle lengths, it is still considered the most accurate,

non-invasive measurement method [13]. In this study, we defined ground truth using Ultra-

Track, an automated tracking software package, which likely introduces additional error when

compared to hand-tracked fascicle lengths. UltraTrack uses a Lucas-Kanade optical flow algo-

rithm that inherently accumulates error from frame to frame [21, 23]; hence, longer data trials

and/or non-cyclical movement where the key frame correction tool is not as effective, promote

larger error accumulation [14]. This error accumulation is a larger factor towards the end of a

given trial, which is particularly relevant in our study, given that we used the last portion of

our data streams to test our ML models. (i.e., last 400 of 1400 frames). These errors likely

impacted the training of our ML models and thus, are no doubt reflected in our reported cor-

relations and RMSEs, which would be different for a hand tracked ground truth. Yet, as men-

tioned in Section 2.2.1, evaluating the last portion as a separate continuous set better emulates

how frames would be processed during real-time applications. Furthermore, it enables qualita-

tive evaluation of the resulting curves to compliment correlation and RMSE.

On the other hand, despite inducing potential errors, UltraTrack is the most widely used

semi-automatic muscle fascicle length tracker [6] and it provides the means to rapidly obtain a

ground truth. Indeed, using UltraTrack as ground truth in this study allowed us to demon-

strate the feasibility of collecting a test B-mode ultrasound imaging data set, rapidly tracking

that data onsite, using it to train the ML model, and then applying the optimized ML model to

process novel images in real-time, all during a single data collection session in the lab (Fig 2,

S3 Table in S1 File). Beyond real time applications, this trade-off of speed for accuracy could

enable offline batch processing of data from more participants and movement tasks on much

shorter timescales when compared to hand-tracking.

Our data demonstrate that the correlation between UltraTracked and ML derived muscle

fascicle lengths depends on the task (Fig 3, Table 2a). Movement tasks that did not involve

explicit ground contact impacts (constrained ankle, free ankle, calf raises) yielded r = 0.84 on

average for direct training, while more dynamic tasks with more variable tissue loading (walk-

ing, mix) had r = 0.47 (Table 2a). A deeper look into our data, suggests that the most dynamic

tasks may worsen the accumulation of error in UltraTrack as described in the previous para-

graph; hence, correlation values in these cases may be lower due to a drifted ground truth [13]

in the last 400 frames used for testing accuracy compared the first 1000 frames used for train-

ing. Most of the literature using the same algorithm as UltraTrack presents measurements of

muscle fascicle length changes from highly controlled contractions on dynamometers [6, 14,

23], with more repeatable muscle forces and ankle motions. These idealized data likely exhib-

ited less ‘noise’ in the B-mode ultrasound images and better leveraged the “Key Frame Correc-

tion” feature in UltraTrack thereby facilitating more accurate fascicle tracking. Furthermore,

studies that analyze muscle fascicle length tracking accuracy in dynamic tasks such as walking

typically break down the data by stride, creating manageable chunks with little error accumula-

tion [6, 22]. In short, it is important to compare results from our ML model-based muscle
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fascicle tracking with data from equivalent movement tasks. For example, our calf raises can

be compared to dynamometer studies that also applied high forces in relatively static ankle

postures. In calf raises, with direct training, our ML model yielded 0.90 average correlation,

directly in line with the similarly high correlations reported for muscle fascicle length measures

taken from hand tracked or UltraTracked images recorded in dynamometer studies in the

field [13, 23, 30].

3.4. Limitations, areas for improvement and potential applications

The ability to non-invasively measure human muscle fascicle lengths in real-time using ultra-

sound could pave the way toward novel ‘muscle-in-the loop’ biofeedback paradigms and wear-

able device control schemes for rehabilitation or augmentation of human movement. In the

current work, we demonstrate that employing artificial intelligence to process ultrasound

images is a key step in this direction. Indeed, ML algorithms, like SVM are adaptable and can

be rapidly trained and optimized to extract ground truth data with high correlation and low

RMSE in real-time.

Despite successfully benchmarking correlation and RMSE values from ML-derived muscle

fascicle length tracking that compare well with other standardized tracking approaches (S3

Table in S1 File), we believe demonstrating the utility of our application in a real-world appli-

cation will be the ultimate test of what is “good enough”. Different applications will fall into

different categories along the continuum of processing speed-accuracy trade-off, and this will

ultimately drive new innovations. So far, ultrasound–based muscle fascicle length measure-

ments have been applied predominantly in post hoc analysis of muscle function during move-

ment, and this has driven a hyper-focus on improving measurement accuracy and reliability

without much pressure on improving the speed with which measurement can be taken.

Our results here should help pave the way for real-time ‘muscle in-the loop’-approaches

that will help redefine application-specific optimization of image tracking reliability and accu-

racy needs. For example, it may be that in some applications, accuracy is paramount only dur-

ing a certain phase of the movement, bringing into focus a new set of factors in the image

processing pipeline that will need to be optimized. In these cases, ML model parameters might

be tuned to provide either higher correlation or lower RMSE rather than equally balancing

these priorities. In addition, closed-loop applications may not need accurate (in mm) muscle

length measurements at all. Instead, biofeedback applications designed to steer muscle length

change in vivo (e.g., to avoid rapid stretching) might probe other kinds of muscle state infor-

mation such as tracking the relative (i.e., unitless) peak or average length /velocity with respect

to a within-participant threshold designed to optimally evolve over time.

It is instructive to consider specific use cases in order to establish the accuracy needed from

the ML model used in the image processing pipeline. One example use-case we have consid-

ered is to use the ML-driven approach outlined in this paper to implement a muscle in-the-

loop biofeedback system aimed at minimizing the metabolic energy cost of individual leg mus-

cle contractions. A reduction in metabolic cost of walking or running on the order of ~10%

could have significant impact on mobility and quality of life [32]. Furthermore, recent studies

have shown that average operating length of a muscle actively generating force can impact its

energy consumption. Roughly speaking, for the human soleus, a 1% change in muscle length

corresponds to a ~1% change in metabolic cost [24, 26]. This relationship offers a window into

the resolution that would be needed to enable a user wearing a real-time ultrasound imaging

device to gain closed-loop control of their own muscle length. Similarly, muscle strain rates

above 30% are known to cause injuries [33, 34], and this physiological fact could be used to

guide the resolution needed in an image-based feedback system that maintains muscle length
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below safety thresholds. It is interesting to note, that because muscle performance and injury

propensity is often couched using relative rather than absolute measures of fascicle length (i.e.,

strain vs. mm), using ML models to track lengths of longer muscles would reduce the bearing

of inaccuracies in data extraction. Furthermore, feeding ultrasound images along with data

from other sensing modalities (e.g., electromyography [35], tensiometry [36, 37]) thru ML

schemes could provide improved measurement robustness and /or resolution.

It is important to note that our approach to optimizing the ML-based estimates of muscle

fascicle length changes from B-mode images was not exhaustive, but instead represents a first

step toward the long-term goal of developing optimized muscle-level feedback systems for aug-

mented movement. For example, the amount of data we used for training, 1 subject and 1 con-

dition (1000 frames), is minimal in comparison to what most traditional convolutional neural

networks use, yet it shows how well a simple lab-applicable approach performs. This is espe-

cially useful for researchers with limited access to data and/or limited deep learning experi-

ence. Nonetheless, some ways of improving our ML model based predictions include: 1)

improving ground truth quality by considering more accurate alternatives to UltraTrack, 2)

optimizing the size and image quality of the training data set 3) implementing real time filter-

ing and signal processing techniques (e.g., Kalman, etc.), 4) using more capable imaging hard-

ware (e.g., increasing ultrasound sampling frequency in time, reducing latency, etc.), 5)

optimizing feature level aspects of the image processing through time (e.g., increasing resolu-

tion at a specific gait phase), 6) devising movement tasks that can generate training sets that

robustly generalize for the intended application (e.g., strenuous and/or highly variable tasks),

and 7) improving the pre-processing phase to include more robust feature extraction.

4. Conclusion & future directions

We conducted a feasibility study to demonstrate that combining ML-based image processing

with B-mode ultrasound imaging can rapidly generate reliable fascicle length measurements

for a large, superficial human calf muscle (i.e., the soleus). Our results pave the way for applica-

tions that require non-invasive, real-time tracking of muscle state in vivo. Although marginally

lower, correlation and RMSE values comparing ML-tracked to UltraTrack software derived

ground truth, were comparable with those obtained through the most common post-process-

ing approaches in the literature. There are a number of avenues to explore that could help

refine the tracking performance of the current framework including optimizing ML algo-

rithms to detect specific features in specific movement tasks or improving the ultrasound

hardware itself. As ML-driven tracking of ultrasound images of human muscle continues to

get faster and more accurate, post hoc tracking of muscle imaging data will be possible at high

throughput and novel systems that employ muscle-in-the-loop feedback for biofeedback or

wearable robotic control will enter the mainstream and form the basis for technologies that

can continuously monitor injury risk, optimize muscle performance in vivo, and help improve

mobility and quality of life.

Supporting information

S1 File. Supplementary material.

(PDF)

S1 Video. Hand-tracking demo.

(MP4)

S2 Video. UltraTrack demo.

(MP4)

PLOS ONE Real-time muscle fascicle length measurement

PLOS ONE | https://doi.org/10.1371/journal.pone.0246611 May 26, 2021 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0246611.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0246611.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0246611.s003
https://doi.org/10.1371/journal.pone.0246611


S3 Video. Real-time demo.

(MP4)

Acknowledgments

The authors would like to acknowledge members of the Physiology of Wearable Robotics

(PoWeR) Lab, Inan Research Lab (IRL), Dr. Owen Beck, and Nathan Glaser (All at Georgia

Tech, US) for their help in polishing both concepts and code.

Author Contributions

Conceptualization: Luis G. Rosa, Omer T. Inan, Gregory S. Sawicki.

Data curation: Luis G. Rosa.

Formal analysis: Luis G. Rosa, Gregory S. Sawicki.

Funding acquisition: Luis G. Rosa, Omer T. Inan, Gregory S. Sawicki.

Investigation: Luis G. Rosa, Gregory S. Sawicki.

Methodology: Luis G. Rosa, Jonathan S. Zia, Omer T. Inan, Gregory S. Sawicki.

Project administration: Luis G. Rosa, Gregory S. Sawicki.

Resources: Luis G. Rosa, Omer T. Inan, Gregory S. Sawicki.

Software: Luis G. Rosa.

Supervision: Omer T. Inan, Gregory S. Sawicki.

Validation: Luis G. Rosa, Gregory S. Sawicki.

Visualization: Luis G. Rosa.

Writing – original draft: Luis G. Rosa.

Writing – review & editing: Luis G. Rosa, Jonathan S. Zia, Omer T. Inan, Gregory S. Sawicki.

References
1. Huang Q, Zhang F, Li X. Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Sur-

vey. BioMed Research International. 2018. https://doi.org/10.1155/2018/5137904 PMID: 29687000

2. Wang S, Summers RM. Machine learning and radiology. Medical Image Analysis. Elsevier; 2012. pp.

933–951. https://doi.org/10.1016/j.media.2012.02.005 PMID: 22465077

3. Liu S, Wang Y, Yang X, Lei B, Liu L, Li SX, et al. Deep Learning in Medical Ultrasound Analysis: A

Review. Engineering. Elsevier Ltd; 2019. pp. 261–275. https://doi.org/10.1016/j.eng.2018.11.020

4. Brattain LJ, Telfer BA, Dhyani M, Grajo JR, Samir AE. Machine learning for medical ultrasound: status,

methods, and future opportunities. Abdom Radiol. 2018; 43: 786–799. https://doi.org/10.1007/s00261-

018-1517-0 PMID: 29492605

5. Akkus Z, Cai J, Boonrod A, Zeinoddini A, Weston AD, Philbrick KA, et al. A Survey of Deep-Learning

Applications in Ultrasound: Artificial Intelligence–Powered Ultrasound for Improving Clinical Workflow. J

Am Coll Radiol. 2019; 16: 1318–1328. https://doi.org/10.1016/j.jacr.2019.06.004 PMID: 31492410

6. Van Hooren B, Teratsias P, Hodson-Tole EF. Ultrasound imaging to assess skeletal muscle architec-

ture during movements: a systematic review of methods, reliability, and challenges. J Appl Physiol.

2020; 128: 978–999. https://doi.org/10.1152/japplphysiol.00835.2019 PMID: 32163334

7. Bohm S, Mersmann F, Santuz A, Arampatzis A. The force–length–velocity potential of the human

soleus muscle is related to the energetic cost of running. Proc R Soc B Biol Sci. 2019; 286: 20192560.

https://doi.org/10.1098/rspb.2019.2560 PMID: 31847774

8. Farris DJ, Robertson BD, Sawicki GS. Elastic ankle exoskeletons reduce soleus muscle force but not

work in human hopping. J Appl Physiol. 2013; 115: 579–585. https://doi.org/10.1152/japplphysiol.

00253.2013-Inspired PMID: 23788578

PLOS ONE Real-time muscle fascicle length measurement

PLOS ONE | https://doi.org/10.1371/journal.pone.0246611 May 26, 2021 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0246611.s004
https://doi.org/10.1155/2018/5137904
http://www.ncbi.nlm.nih.gov/pubmed/29687000
https://doi.org/10.1016/j.media.2012.02.005
http://www.ncbi.nlm.nih.gov/pubmed/22465077
https://doi.org/10.1016/j.eng.2018.11.020
https://doi.org/10.1007/s00261-018-1517-0
https://doi.org/10.1007/s00261-018-1517-0
http://www.ncbi.nlm.nih.gov/pubmed/29492605
https://doi.org/10.1016/j.jacr.2019.06.004
http://www.ncbi.nlm.nih.gov/pubmed/31492410
https://doi.org/10.1152/japplphysiol.00835.2019
http://www.ncbi.nlm.nih.gov/pubmed/32163334
https://doi.org/10.1098/rspb.2019.2560
http://www.ncbi.nlm.nih.gov/pubmed/31847774
https://doi.org/10.1152/japplphysiol.00253.2013-Inspired
https://doi.org/10.1152/japplphysiol.00253.2013-Inspired
http://www.ncbi.nlm.nih.gov/pubmed/23788578
https://doi.org/10.1371/journal.pone.0246611


9. Farris DJ, Sawicki GS. Human medial gastrocnemius force-velocity behavior shifts with locomotion

speed and gait. Proc Natl Acad Sci U S A. 2012; 109: 977–982. https://doi.org/10.1073/pnas.

1107972109 PMID: 22219360

10. Farris DJ, Sawicki GS. Linking the mechanics and energetics of hopping with elastic ankle exoskele-

tons. J Appl Physiol. 2012; 113: 1862–1872. https://doi.org/10.1152/japplphysiol.00802.2012 PMID:

23065760

11. Son J, Rymer WZ, Lee SSM. Limited fascicle shortening and fascicle rotation may be associated with

impaired voluntary force-generating capacity in pennate muscles of chronic stroke survivors. Clin Bio-

mech. 2020; 75. https://doi.org/10.1016/j.clinbiomech.2020.105007 PMID: 32339945

12. Miyoshi T, Kihara T, Koyama H, Yamamoto SI, Komeda T. Automatic detection method of muscle fiber

movement as revealed by ultrasound images. Med Eng Phys. 2009; 31: 558–564. https://doi.org/10.

1016/j.medengphy.2008.11.004 PMID: 19110463

13. Kwah LK, Pinto RZ, Diong J, Herbert RD. Reliability and validity of ultrasound measurements of muscle

fascicle length and pennation in humans: A systematic review. Journal of Applied Physiology. American

Physiological Society Bethesda, MD; 2013. pp. 761–769. https://doi.org/10.1152/japplphysiol.01430.

2011 PMID: 23305989

14. Drazan JF, Hullfish TJ, Baxter JR. An automatic fascicle tracking algorithm quantifying gastrocnemius

architecture during maximal effort contractions. PeerJ. 2019; 2019: e7120. https://doi.org/10.7717/

peerj.7120 PMID: 31304054

15. Cronin NJ, Finni T, Seynnes O. Using deep learning to generate synthetic B-mode musculoskeletal

ultrasound images. Comput Methods Programs Biomed. 2020; 196: 105583. https://doi.org/10.1016/j.

cmpb.2020.105583 PMID: 32544777

16. Cunningham R, Sánchez M, May G, Loram I. Estimating Full Regional Skeletal Muscle Fibre Orienta-

tion from B-Mode Ultrasound Images Using Convolutional, Residual, and Deconvolutional Neural Net-

works. J Imaging. 2018; 4: 29. https://doi.org/10.3390/jimaging4020029

17. Cunningham RJ, Harding PJ, Loram ID. The application of deep convolutional neural networks to ultra-

sound for modelling of dynamic states within human skeletal muscle. 2017 [cited 17 Jul 2020]. http://

arxiv.org/abs/1706.09450.

18. Cronin NJ, Finni T, Seynnes O. Fully Automated Analysis of Muscle Architecture from B-Mode Ultra-

sound Images with Deep Learning A PREPRINT. 2020. https://github.com/njcronin/DL_Track.

19. Müller KR, Tangermann M, Dornhege G, Krauledat M, Curio G, Blankertz B. Machine learning for real-

time single-trial EEG-analysis: From brain-computer interfacing to mental state monitoring. J Neurosci

Methods. 2008; 167: 82–90. https://doi.org/10.1016/j.jneumeth.2007.09.022 PMID: 18031824

20. Rosten E, Drummond T. Machine learning for high-speed corner detection. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics). Springer Verlag; 2006. pp. 430–443.

21. Farris DJ, Lichtwark GA. UltraTrack: Software for semi-automated tracking of muscle fascicles in

sequences of B-mode ultrasound images. Comput Methods Programs Biomed. 2016; 128: 111–118.

https://doi.org/10.1016/j.cmpb.2016.02.016 PMID: 27040836

22. Cronin NJ, Carty CP, Barrett RS, Lichtwark G. Automatic tracking of medial gastrocnemius fascicle

length during human locomotion. J Appl Physiol. 2011; 111: 1491–1496. https://doi.org/10.1152/

japplphysiol.00530.2011-During PMID: 21836045

23. Gillett JG, Barrett RS, Lichtwark GA. Reliability and accuracy of an automated tracking algorithm to

measure controlled passive and active muscle fascicle length changes from ultrasound. Comput Meth-

ods Biomech Biomed Engin. 2013; 16: 678–687. https://doi.org/10.1080/10255842.2011.633516

PMID: 22235878

24. Beck ON, Punith LK, Nuckols RW, Sawicki GS. Exoskeletons improve locomotion economy by reducing

active muscle volume. Exerc Sport Sci Rev. 2019; 47. https://doi.org/10.1249/JES.0000000000000204

PMID: 31436749

25. Matijevich ES, Branscombe LM, Zelik KE. Ultrasound estimates of Achilles tendon exhibit unexpected

shortening during ankle plantarflexion. J Biomech. 2018; 72: 200–206. https://doi.org/10.1016/j.

jbiomech.2018.03.013 PMID: 29602476

26. Nuckols RW, Dick TJM, Beck ON, Sawicki GS. Ultrasound imaging links soleus muscle neuromecha-

nics and energetics during human walking with elastic ankle exoskeletons. Sci Rep. 2020; 10: 1–15.

27. Van Der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, et al. Scikit-

image: Image processing in python. PeerJ. 2014; 2014: e453. https://doi.org/10.7717/peerj.453 PMID:

25024921

28. Pedregosa F, Michel V, Grisel O, Blondel M, Prettenhofer P, Weiss R, et al. Scikit-learn: Machine Learn-

ing in Python. J Mach Learn Res. 2011. Available: http://scikit-learn.sourceforge.net.

PLOS ONE Real-time muscle fascicle length measurement

PLOS ONE | https://doi.org/10.1371/journal.pone.0246611 May 26, 2021 16 / 17

https://doi.org/10.1073/pnas.1107972109
https://doi.org/10.1073/pnas.1107972109
http://www.ncbi.nlm.nih.gov/pubmed/22219360
https://doi.org/10.1152/japplphysiol.00802.2012
http://www.ncbi.nlm.nih.gov/pubmed/23065760
https://doi.org/10.1016/j.clinbiomech.2020.105007
http://www.ncbi.nlm.nih.gov/pubmed/32339945
https://doi.org/10.1016/j.medengphy.2008.11.004
https://doi.org/10.1016/j.medengphy.2008.11.004
http://www.ncbi.nlm.nih.gov/pubmed/19110463
https://doi.org/10.1152/japplphysiol.01430.2011
https://doi.org/10.1152/japplphysiol.01430.2011
http://www.ncbi.nlm.nih.gov/pubmed/23305989
https://doi.org/10.7717/peerj.7120
https://doi.org/10.7717/peerj.7120
http://www.ncbi.nlm.nih.gov/pubmed/31304054
https://doi.org/10.1016/j.cmpb.2020.105583
https://doi.org/10.1016/j.cmpb.2020.105583
http://www.ncbi.nlm.nih.gov/pubmed/32544777
https://doi.org/10.3390/jimaging4020029
http://arxiv.org/abs/1706.09450
http://arxiv.org/abs/1706.09450
https://github.com/njcronin/DL_Track
https://doi.org/10.1016/j.jneumeth.2007.09.022
http://www.ncbi.nlm.nih.gov/pubmed/18031824
https://doi.org/10.1016/j.cmpb.2016.02.016
http://www.ncbi.nlm.nih.gov/pubmed/27040836
https://doi.org/10.1152/japplphysiol.00530.2011-During
https://doi.org/10.1152/japplphysiol.00530.2011-During
http://www.ncbi.nlm.nih.gov/pubmed/21836045
https://doi.org/10.1080/10255842.2011.633516
http://www.ncbi.nlm.nih.gov/pubmed/22235878
https://doi.org/10.1249/JES.0000000000000204
http://www.ncbi.nlm.nih.gov/pubmed/31436749
https://doi.org/10.1016/j.jbiomech.2018.03.013
https://doi.org/10.1016/j.jbiomech.2018.03.013
http://www.ncbi.nlm.nih.gov/pubmed/29602476
https://doi.org/10.7717/peerj.453
http://www.ncbi.nlm.nih.gov/pubmed/25024921
http://scikit-learn.sourceforge.net
https://doi.org/10.1371/journal.pone.0246611
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