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Abstract

Comprehensive data sets for lower-limb kinematics and kinetics during slope walking and run-

ning are important for understanding human locomotion neuromechanics and energetics and

may aid the design of wearable robots (e.g., exoskeletons and prostheses). Yet, this informa-

tion is difficult to obtain and requires expensive experiments with human participants in a gait

laboratory. This study thus presents an empirical mathematical model that predicts lower-limb

joint kinematics and kinetics during human walking and running as a function of surface gradi-

ent and stride cycle percentage. In total, 9 males and 7 females (age: 24.56 ± 3.16 years)

walked at a speed of 1.25 m/s at five surface gradients (-15%, -10%, 0%, +10%, +15%) and

ran at a speed of 2.25 m/s at five different surface gradients (-10%, -5%, 0%, +5%, +10%).

Joint kinematics and kinetics were calculated at each surface gradient. We then used a Fourier

series to generate prediction equations for each speed’s slope (3 joints x 5 surface gradients x

[angle, moment, mechanical power]), where the input was the percentage in the stride cycle.

Next, we modeled the change in value of each Fourier series’ coefficients as a function of the

surface gradient using polynomial regression. This enabled us to model lower-limb joint angle,

moment, and power as functions of the slope and as stride cycle percentages. The average

adjusted R2 for kinematic and kinetic equations was 0.92 ± 0.18. Lastly, we demonstrated how

these equations could be used to generate secondary gait parameters (e.g., joint work) as a

function of surface gradients. These equations could be used, for instance, in the design of

exoskeletons for walking and running on slopes to produce trajectories for exoskeleton control-

lers or for educational purposes in gait studies.

1. Introduction

Kinematic and kinetic data describing the dynamics of lower-limb joints are critical for under-

standing the neuromechanics and energetics of human locomotion [1] and guiding the design

of assistive devices (e.g., lower-limb exoskeletons). From a basic science perspective, studies
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have provided insights into the sources of metabolic energy consumption by relating joint

kinetics to whole-body oxygen consumption [2,3]. From a more specific applied science per-

spective, kinematic and kinetic data are important for sizing the geometry and material prop-

erties of lower-limb orthoses [4,5] and motors for powered exoskeletons and prostheses [6,7],

as well as for guiding control software in both powered exoskeletons [8] and controllers for

commercial devices, such as ATLAS [9], ReWalk [10], and eLegs [11], and prostheses [12,13].

Combining experimental approaches like motion capture and force measurements with

rigid body models (i.e., inverse dynamics) provides means for obtaining lower-limb joint kine-

matics and kinetics data. Accordingly, many studies have already addressed walking or run-

ning at typical speeds on level ground (e.g., [2,14,15]). However, recently, several papers have

instead focused on the kinematics and kinetics of slope walking (e.g., [16–19]) and slope run-

ning (e.g., [9,16,20–22]); however, only one study [19] analyzed the 3D joint during walking.

Moreover, to the best of our knowledge, joint kinematics and kinetics of slope running on

three anatomical planes has only been reported on moderate slopes of up to 7% [22]. As such,

our study provides a wider range of surface gradients compared to the current literature.

Sloped surface walking and running is of particular interest when designing lower-limb exo-

skeletons and prostheses to augment, restore, or harvest joint-level mechanical gait energy

because in real life applications, the assistive device user does not only walk or run on level

surfaces.

Further, data acquisition of motion and force during locomotion is expensive and time con-

suming, meaning the available joint-level data is limited to only a small subset of speeds. The

same holds for up- and downhill locomotion data, perhaps due to the added difficulty of

instrumenting sloped surfaces. Additionally, relationships describing how lower-limb joint

kinematics and kinetics depend on the gait phase have not been documented using parametric

equations, which, if developed, can provide pertinent data for the design of assistive devices

without requiring exhaustive data acquisition. Parametric equations enable kinetics and kine-

matics calculations on a range of slopes, not only the slopes measured in gait lab. These could

be useful in many applications: (1) As a reference for an exoskeleton, a prosthesis, or a walking

robot controller that needs to engage different slopes or change gait modes (without the need

to model the raw data); (2) In device optimization where having an equation enables much

simpler modeling of the optimization problem; (3) In education, enabling students to produce

joint parameters of many gait states and analyze them, a task that would be much harder to

perform using raw data.

Using an experimental data set, our study aimed to develop a comprehensive 3D parametric

model of lower-extremity joint kinematics and kinetics during human walking and slow run-

ning up and down slopes. This describes the average lower-limb joint kinematics and kinetics

of a healthy, relatively young (up to 40 years old) population.

2. Methods

2.1 Experimental protocol

We collected gait data in two separate experiments at two different labs (Ben-Gurion Univer-

sity (BGU) and North Carolina State University (NCSU)) from 16 healthy adults, with no

lower-limb injuries or impairments: 9 males and 7 females (age: 24.56 ± 3.16 years, [Range 18–

28 years]; height: 1.73 ± 0.09 m, [range: 1.55–1.86 m]; mass: 68.01 ± 13.98 kg, [range: 45.0–

88.7 kg]). The height and mass ranges cover approximately 90% of the US and Israeli demo-

graphics [23,24]. All participants signed an informed consent form approved by either the

University of North Carolina at Chapel Hill Human Research Institutional Review Board or

the Ben-Gurion University of the Negev Human participants Research Committee. All
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participants walked on an instrumented split-belt treadmill (Bertec Inc., Columbus, OH, USA)

at a speed of 1.25 m/s and at five different surface gradients (-15%, -10%, 0%, +10%, +15%), as

well as ran at a speed of 2.25 m/s and at five different surface gradients (-10%, -5%, 0%, +5%,

+10%). The participants from BGU also walked and ran on an additional four slopes for each

speed (-12.5%, -5% +5%, +12.5% for walking; -7.5%, -2.5%, +2.5%, +7.5% for running).

Motion and force data were collected at each surface gradient using a minimum of 7 gait

cycles, with an average of 16 cycles per condition. Using this data for each participant, the aver-

age joint kinematics and kinetics were calculated.

2.2 Data acquisition

Motion data were collected using a motion caption system (eight-camera MX40+, Vicon Inc.,

Oxford, UK or fourteen-camera Oqus, Qualisys Medical AB1, Gothenburg, Sweden) at a fre-

quency of 120 Hz to capture the positions of 22 reflective markers attached to each partici-

pant’s pelvis and right leg (modification of the Calibration Anatomical System Technique

(CAST) marker set [25]; see S1 Fig for more information regarding marker placements). Clus-

ters of three or four markers were placed on rigid plates and attached to the pelvis, thigh, and

shank segments to record their movement while running and walking.

Ground reaction force data were recorded as the participants walked and ran using two

force platforms embedded in the treadmill (Bertec Inc, Columbus, OH, USA) at a frequency of

120 Hz. To measure the forces acting on each foot, the participants were instructed to place

each foot on the corresponding side force plate. Both the marker positions and ground reac-

tion raw data were low-pass filtered (Butterworth second order forward and backward passes)

with a cut-off frequency of 10 Hz for motion and 35 Hz for ground reaction force data.

2.3 Lower-limb joint kinematics and kinetics calculations

Using Visual 3D (C-Motion Inc., Germantown, MD, USA) and assuming that both legs

behaved symmetrically, ankle-, knee-, and hip-joint 3D kinematics and kinetics (joint angles

and net joint movements) were calculated for the right leg only in three anatomical planes—

sagittal, frontal, and transverse. We captured 5–20 s of static standing data to build a model for

each participant’s specific body size (6 degrees of freedom). The markers’ positions on the seg-

ment endpoints in a static standing trial were used to calibrate a four-segment model (pelvis,

thigh, shank, and foot) that calculated the body segment parameters (segment mass, center of

mass, and moment of inertia) using the regression equations from [26]. Joint mechanical

power was calculated for each joint by multiplying net joint moment by angular velocity. All

calculated joint angles (defined in Fig 1 and S1 Table), moments, and mechanical powers

were normalized in time as percentages of one stride cycle using spline interpolation

(MATLAB, MathWorks, Inc., Natick, MA). For each participant, the average joint kinematics

and kinetics where calculated. Next moment and mechanical power time series were then nor-

malized per each participant’s height and mass [27]. The coordinate system used a standard

Cardin X-Y-Z sequence (X = medial/lateral axis, Y = anterior/posterior axis, Z = superior/infe-

rior axis). Angular velocities were calculated using numerical differentiations of the joint

angles (central difference). All participants’ experimental results were included and can be

downloaded online (see S1 Data).

2.4 Modeling parametric equations to predict lower-limb joint dynamics

for running on gradients

Our goal was to develop equations to predict the hip-, knee-, and ankle-joints’ angles,

moments, and mechanical powers (9 total equations for each activity and plane of motion,
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parameterized by surface gradient and stride-cycle percentage). After calculating the stride-

cycle average kinematics and kinetics for all available stride cycles and participants per each

lower-limb joint (i.e., ankle, knee, and hip) across five surface gradients, we created training

data by randomly selecting 14 participants (7 from BGU and 7 from NCSU); the remaining

two participants (one from each lab) were later used for test data. Additionally, four slopes

(-12.5%, -5% +5%, +12.5% for walking; -7.5%, -2.5%, +2.5%, +7.5% for running) that were not

included in the model’s development were used to test the equations’ performance on data

that wasn’t used to train the model.

The prediction equations were developed in two stages. In Stage 1, we used a Fourier series

to develop prediction equations for each of the five training surface gradients, yielding a total

of 45 equations for each plane of motion (3 lower-limb joints x 5 surface gradients x [angle,

movement, mechanical power]) for each mode of locomotion (i.e., walking or running). For

each joint and surface gradient, the equation input was the point in the stride cycle (i.e., stride

cycle percentage). We defined a full stride cycle as heel strike to heel strike of the same limb,

with the variable starting at 0% and ending at 100%. In Stage 2, we used Fourier series equa-

tions for each surface gradient and a regression analysis to develop a set of equations that pre-

dict a given stride average time series (e.g., lower-limb joint angle, moment, or mechanical

power) for a given joint as a continuous function of (1) the surface gradient and (2) stride

cycle percentage. Due to their continuity, these equations could predict a time series for a

given joint even for surface gradients we did not measure (e.g., 2.5% grade). Hereafter, the

term lower-limb joint variable refers to the time series data for the angle, moment, and

mechanical power of each lower-limb joint, and the term input parameter refers to (1) the sur-

face gradient during running or walking and (2) stride cycle percentage. To evaluate the pre-

diction equations’ goodness-of-fit, we used adjusted R2 and root mean square error (RMSE)

Fig 1. Definition of joint angles in three anatomical planes. For each angle, the arrow points in the direction of the

positive angle (increase in angle value). Ankle angle was defined as the angle between the foot and shank segments;

knee angle was calculated as the angle between the thigh and shank; and hip angle was calculated between the thigh

and pelvis. A: Sagittal plane. In a neutral standing position when the foot is flat on the ground, ankle angle measures

slightly less than 90˚; knee angle measures 0˚ when the shank and thigh are in a perfectly straight line; and hip angle

measures close to 0˚. B: Frontal plane. C: Transverse plane. In both planes, frontal and transverse, ankle angle measures

0˚ when the foot and shank are in a perfectly straight line/the same plane, while knee and hip angles in these planes are

0˚ in a neutral anatomical standing posture.

https://doi.org/10.1371/journal.pone.0269061.g001
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[28]. Additionally, the variability between the participant results were calculated in the form of

participants standard deviation. This variability could be due to real individual differences and

errors in the motion measurements (e.g., skin artifacts) or inverse dynamics calculations

[29,30].

2.4.1. Stage 1: Using Fourier series expansions to fit equations for joint kinematics and

kinetics at each surface gradient. To develop an equation for each surface gradient as a

function of stride cycle percentage, we tested several curve-fitting methods (e.g., n-polynomial,

wavelet). Since locomotion is a periodic behavior, we decided to use a Fourier series in the

form of sine and cosine trigonometric functions. To reduce the number of variables, we

removed the phase shift terms in the arguments for sine and cosine (Eq 1). Next, to find the

equation parameters (frequency (ωi) and coefficients (βo, δi, γi)), we performed a nonlinear

optimization using R (http://www.r-project.org). Due to computational complexity, the opti-

mization did not always converge, so we then transformed the optimization into a linear prob-

lem. From the nonlinear optimization results, we observed that the frequencies obtained in all

surface gradients ranged from 0.03 to 0.07. Since the stride cycle is normalized to 100 points,

we set the frequency value in each fit according to 2pf ¼ 2p 1

T ¼ 2p 1

100
. After determining fre-

quency, the only unknown variables were the equation constant (β0) and the sine and cosine

coefficients (δi, γi):

b0 þ
Pn
i¼1
½di � sinðioxÞ þ gi � cosðioxÞ� ð1Þ

where n is the order of the series and x is time (stride cycle percentage). This formulation led

to a linear optimization problem and guaranteed convergence to an optimal solution. How-

ever, we did not know a priori the order of the Fourier series required to represent the data

well.

To obtain a first approximation of the minimal order required for the Fourier series, we cal-

culated the signal power density for each lower-limb joint variable (e.g., angle). The main sig-

nal components were identified when the lowest included frequency was > 5% of the

frequency with maximum amplitude. Examining the results of the five surface gradients for

each participant and at each joint revealed that for a given lower-limb joint variable (e.g.,

moment), the number of components required (series order) was similar across all partici-

pants. Therefore, we used the average number of components across participants as the initial

Fourier series size.

We then determined the final series size using the following four rules as guidelines. First,

the series size for each lower-limb joint variable had to be the same across all surface gradients

(e.g., representing ankle joint angle by a fifth order series for gradients from -10% to +10%).

Second, the adjusted R2 of the fit had to be higher than 95%; if the initial size did not yield a

sufficient R2, the series size was increased by a maximum order of two. Third, the series size

was reduced to achieve a more compact equation for an R2 higher than 95%, with this reduc-

tion performed until the change in the average adjusted R2 was a maximum of 1% less than the

initial R2. Fourth, insignificant coefficients (p< 0.05) on at least three of the five surface gradi-

ents were removed from the Fourier series. Using these rules, we obtained a total of 90 equa-

tions, with 45 separate Fourier series prediction equations corresponding to a stride time

series for three lower-limb joint (ankle, knee, and hip) variables (angle, moment, and mechani-

cal power) at each of the five training surface gradients at each speed (walking or running).

2.4.2 Stage 2: Using regression equations to generalize the Fourier series equations to

predict lower-limb joint kinematics and kinetics at any surface gradient. Our overall goal

was to predict the lower-limb joint variables during human walking or running as a function

of the following two variables: surface gradient and stride cycle percentage. To achieve this
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goal, we used polynomial regressions to model how the Fourier series coefficients βo, δi, γi in
Eq 1 change as a function of surface gradient while running, yielding Eqs 2–4:

b0 ¼ s0 þ
Pm
j¼1
sj � Surface Gradient

j ð2Þ

di ¼ ri0 þ
Pm
j¼1
rij � Surface Gradient

j ð3Þ

gi ¼ mi0 þ
Pm
j¼1
mij � Surface Gradient

j ð4Þ

where i is the index for the coefficients from Eq 1; j is the index of the polynomial component;

m is the polynomial order; and Surface Gradient is the vertical increase in height divided by

the horizontal distance covered over the ground surface while walking or running (e.g., 10%

slope, in practice 5.71˚ inclination).

To avoid overfitting, we limited the order of the polynomial to m� 3. Other criteria for

determining the size of the polynomial describing the variation in Fourier coefficients as a

function of surface gradient were the adjusted R2 and relative change in the βo, δi, γi coeffi-

cients. The coefficients’ relative change was defined as the total range (maximum–minimum)

that a coefficient had at the five surface gradients divided by the difference between the lower-

limb joint variables’ maximum and minimum values during a stride cycle. For example, since

the largest change in the knee angle was 70˚ (Fig 2) and the knee angle β0 ranged 48–55˚, the

relative change for β0 is 7/70 = 0.1. We used relative change since joint angle, moment, and

mechanical power are of different magnitude, and relative change allowed us to apply the

same rules for all three.

The final polynomial size was determined as follows. When the relative change was less

than 5%, we performed a linear fit. When the relative change of the coefficients was more than

5% but less than 20%, we compared the polynomial fit that achieved the highest adjusted R2 to

a polynomial with one order less. If the change in the adjusted R2 was less than 5%, we reduced

the polynomial order to the lowest order that would result in a less than 5% change in the

adjusted R2. When the coefficients’ relative change was higher than 20%, we compared the

polynomial fit that achieved the highest adjusted R2 and a polynomial with one order less. If

the change in the adjusted R2 was less than 2%, we continued to reduce the polynomial order

to the lowest order that would result in a less than 2% change in the adjusted R2. Fig 3 illus-

trates this set of rules with the ankle angle data. MATLAB (MathWorks, Inc., Natick, MA)

codes used to generate the time series of predicted lower-limb joint variables while walking or

running at any gradient within the trained range are included and can be downloaded online

(S1 Data). In most of the 90 combinations of surface and joint parameter (e.g., hip angle in the

frontal plane, while running in -10% slope) the equations were developed from 14 participates.

Fig 2. Stage 1: Sagittal knee joint angle as an example of the Fourier series fit for each surface gradient while

running at 2.25 m/s using the linear formulation. The dotted line represents the fit, while the gray line represents the

average of all participants. The gray shading is the between-participants variability, represented with one standard

deviation.

https://doi.org/10.1371/journal.pone.0269061.g002
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However, in a few parameters due to errors in data collection the data set used to develop the

equation was from less than 14 but not less than 9 participants.

The Fourier coefficients in this example are used in Eq 1 as follows:

Ankle AngleðxÞ
¼ b0 þ d1 sinðoxÞ þ g1 cosðoxÞ þ d2 sinð2oxÞ þ g2 cosð2oxÞ þ d3 sinð3oxÞ
þ g3 cosð3oxÞ

Of note: we used a similar approach for each lower-limb joint’s angle, moment, and

mechanical power profiles.

2.5 Evaluation of the parametric equations

Following the evaluation of the trained data’s prediction equations, we examined their perfor-

mance using unknown data set aside during the equations’ development. The two types of

unknown data examined were from two new participants and four new slopes from 8 BGU

participants (1 new and 7 previously utilized data) at each velocity (walking: -12.5%, -5%, +5%,

+12.5%; running: -7.5%, -2.5%, +2.5%, +7.5%). We chose to present most the validation figures

on the sagittal plane since most of the mechanical work is done on this plane [16].

2.6 Effect of participants’ gender on the prediction equations

Additionally, we tested whether a single set of equations accounted for both females and

males. The participants were thus separated into two groups based on their gender, with 7 par-

ticipants in each group. We then developed a set of parametric equations for each group with

one thing in common: fixed series sizes, determined previously for the whole group. We then

defined a meaningful coefficient (mc) equation (Eq 5) to determine the ratio of the difference

between each gender’s models to the model’s mean square error:

mc ¼
ð
Pn

1
ðyfi � ymiÞ

2
Þ
.

n

ðMSE1 þMSE2Þ=2

ð5Þ

where yf and ym are the models for lower-limb joint variables in each anatomical plane for the

female and male group, respectively; i is the index for the surface gradient; n is the total num-

ber of surface gradients (n = 5); andMSE1 andMSE2 are the models’ mean square errors. If the

mc is 1 or lower, the difference between the models is similar to or smaller than the error in

the model’s predication (for each groups), meaning a single model sufficiently explains the

data for both groups. Meanwhile, large mc values indicate that the difference between the

models is larger than the errors between each model and its experimental data, meaning two

separate models are required.

Fig 3. Stage 2: The fitted polynomial for the Fourier coefficients (black dots) as a function of surface gradient (fitted gray line)

demonstrated with the ankle angle from running at 2.25 m/s.

https://doi.org/10.1371/journal.pone.0269061.g003
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2.7 Enabling an extension of our predication equations to estimate joint

work as a function of surface gradient

Our prediction equations can be used to study gait even for lower-limb joint variables that we

did not fit. Here, we show how to calculate the joint work during a stride cycle from 0 to 100

(analytically or numerically, e.g., Euler):

WN ¼
R 100

0
pNðstride cycle %; surface gradientÞ dtN �

P100

1
pNðiÞ

1

100
ð6Þ

whereWN is the normalized work, pN is the normalized power, and i is the percentage in

the normalized gait cycle (tN). Note thatWN can be used to calculated only negative

work or only positive. Since our equations predict the mechanical power of a stride cycle

normalized to a participant’s height and weight, in order to compute a specific partici-

pant’s actual mechanical work (e.g., for the purpose of designing an assistive device), the

normalized work needs to be multiplied by stride time, participant height, and partici-

pant mass:

W ¼WN � ST �M�H ð7Þ

where ST is stride time, M is participant mass, and H is participant height. Stride time can

be calculated using Eqs 8 or 10, which we present in the Results section 3.5. To obtain

these equations, we developed regression equations for stride cycle time and stride length

as a function of surface gradient, with stride length calculated as SL = V×ST (V = treadmill

velocity, ST = stride time). Note thatWN is calculated using integration of the power equa-

tion; therefore, the adjusted R2 for the for the power equation of a given joint and plane

provides a good estimation of the accuracy of WN. Two equations are used when calculat-

ing W (Eq 7), and we know the fit (R2) for each. Thus, a good approximation of the worst

accuracy of the calculation of this work would be obtained by multiplying the R2 values

for both power and stride time.

3. Results

3.1 Stage 1: Fourier fits for each lower-limb joint variable at each surface

gradient

After obtaining the first order approximation for the Fourier series, we applied the set of rules

described at the end of section 2.4.1 to determine the final form (size) of the Fourier series for

each lower-limb joint variable as a function of stride cycle percentage for a given single surface

gradient. The average adjusted R2 for each joint parameter ranged from 0.98 to 1 (0.999) in the

sagittal plane, from 0.92 to 1 in the frontal plane, and from 0.72 to 1 in the transverse plane.

(Tables 1 and 2). Visually (e.g., knee angle in Fig 2), we observed that the fit followed the data

well for all lower-limb joint variables.

3.2 Stage 2: Evaluation of equation fits for walking and running at any

surface gradient (i.e., final fit)

Evaluating the equation fits to predict the lower-limb joint variables for any given surface gra-

dient as a function of stride cycle percentage revealed average adjusted R2 values ranging from

0.98 to 1 (0.998) in the sagittal plane, from 0.66 to 0.99 in the frontal plane, and from 0.72 to

0.98 in the transverse plane. As expected, the RMSE values for the final fit (Tables 3 and 4)

were slightly worse than the fit of each surface gradient (i.e., Stage 1). Visually, the fits followed

the data quite well (see Figs 4–6 for examples in the sagittal plane and Fig 7 for examples in
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the frontal and transverse planes). S1 File presents an example of how to assemble these equa-

tions. Low values of adjusted R2 are due to failure of the algorithm to fit the data, see S2 File

for further explanation and examples.

Table 1. Evaluation of the prediction equations for each lower-limb joint variable for each given surface gradient as a function of stride-cycle percentage (Stage 1)

in all anatomical planes when running at 2.25 m/s. The adjusted R2 and RMSE values are presented as averages across surface gradients and standard deviation (in

brackets).

Stage 1: Initial fit, f(stride cycle %), running at 2.25 m/s

Sagittal plane

(x-axis)

Frontal plane

(y-axis)

Transverse plane

(z-axis)

Parameter Series order R2
Adj RMSE Series order R2

Adj RMSE Series order R2
Adj RMSE

Ankle Angle [o] 3 0.99 (0.01) 0.72 (0.28) 5 0.99 (0.00) 0.33 (0.10) 3.5� 0.99 (0.00) 0.36 (0.06)

Knee Angle [o] 2 0.99 (0.00) 1.80 (0.34) 4.5� 0.99(0.01) 0.12 (0.04) 5 1 (0.00) 0.23 (0.09)

Hip Angle [o] 3 1 (0.00) 0.37 (0.07) 3 0.99 (0.00) 0.31 (0.08) 5 0.96 (0.02) 0.23 (0.07)

Ankle Moment [Nm/)kg�m)] 3 0.99 (0.00) 0.04 (0.01) 4 1 (0.00) 0.01 (0.00) 3 0.72 (0.3) 0.01 (0.00)

Knee Moment [Nm/)kg�m)] 4 0.99 (0.00) 0.03 (0.01) 3.5� 0.92 (0.12) 0.01 (0.00) 5 0.98 (0.01) 0.01 (0.00)

Hip Moment [Nm/)kg�m)] 4.5� 0.99 (0.00) 0.02 (0.00) 5 1 (0.00) 0.02 (0.01) 4 0.96 (0.04) 0.01 (0.00)

Ankle Power [W/)kg�m)] 5 1 (0.00) 0.08 (0.01) 11.5� 0.99 (0.01) 0.01 (0.00) 12 0.83 (0.2) 0.01 (0.00)

Knee Power [W/)kg�m)] 7 0.99 (0.01) 0.11 (0.05) 13 0.99 (0.01) 0.01 (0.00) 11.5� 0.96 (0.03) 0.01 (0.00)

Hip Power [W/)kg�m)] 8 0.99 (0.00) 0.03 (0.01) 10 0.98 (0.03) 0.02 (0.01) 12.5� 0.97 (0.01) 0.01 (0.00)

�Note: Half values indicate that one of the coefficients (δi, γi) was not statistically significant. Adjusted R2 and RMSE mean (standard deviation) values are presented.

https://doi.org/10.1371/journal.pone.0269061.t001

Table 2. Evaluation of the prediction equations for each lower-limb joint variable for each given surface gradient as a function of stride-cycle percentage (Stage 1)

in all anatomical planes when walking at 1.25 m/s. The adjusted R2 and RMSE values are presented as averages across surface gradients (standard deviation (in

brackets).

Stage 1: Initial fit, f(stride cycle %), walking at 1.25 m/s

Sagittal plane

(x-axis)

Frontal plane

(y-axis)

Transverse plane

(z-axis)

Parameter Series order R2
Adj RMSE Series order R2

Adj RMSE Series order R2
Adj RMSE

Ankle Angle [o] 5 0.99

(0.01)

0.66 (0.15) 5 0.99 (0.01) 0.35 (0.14) 4 0.99 (0.00) 0.29 (0.04)

Knee Angle [o] 3 1

(0.00)

1.06 (0.28) 5 0.98 (0.01) 0.17 (0.04) 5 0.98 (0.01) 0.27 (0.03)

Hip Angle [o] 3 1

(0.00)

0.32 (0.05) 3 0.99 (0.00) 0.25 (0.11) 5 0.98 (0.01) 0.24 (0.07)

Ankle Moment [Nm/)kg�m)] 4 0.99

(0.00)

0.03 (0.00) 4 0.98 (0.01) 0.01 (0.00) 5 0.99 (0.00) 0.00 (0.00)

Knee Moment [Nm/)kg�m)] 5 1

(0.00)

0.01 (0.00) 4.5� 0.97 (0.01) 0.01 (0.00) 5 0.97 (0.00) 0.01 (0.00)

Hip Moment [Nm/)kg�m)] 3.5� 0.98

(0.01)

0.03

(0.0)

5 0.99 (0.00) 0.02 (0.01) 4 0.97 (0.01) 0.01 (0.00)

Ankle Power [W/)kg�m)] 7 0.98

(0.01)

0.05 (0.01) 12.5� 0.99 (0.01) 0.00 (0.00) 14.5� 0.97 (0.01) 0.00 (0.00)

Knee Power [W/)kg�m)] 8 0.99

(0.00)

0.03 (0.02) 15 0.99 (0.02) 0.00 (0.00) 12 0.98 (0.01) 0.00 (0.00)

Hip Power [W/)kg�m)] 5.5� 0.99

(0.01)

0.03 (0.00) 11 0.99 (0.01) 0.01 (0.

00)

14 0.98 (0.01) 0.00 (0.00)

�Note: Half values indicate that one of the coefficients (δi, γi) was not statistically significant. Adjusted R2 and RMSE mean (standard deviation) values are presented.

https://doi.org/10.1371/journal.pone.0269061.t002
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3.3 Evaluation of the parametric equations

Fig 8 demonstrates an example of the relations between the prediction equations and new

data. In this example, we plotted the model (fit) within a range of three standard deviations

(this range should include 99% of the population variation) calculated from the training data.

We expected the test data to fall within that range, as can be seen in the example. As for the

slopes not used for the equations’ development, our evaluation revealed that when examining

all slopes on the three planes, the mean adjusted R2 is 0.94 (range: 0.86–0.98) and mean RMSE

0.84 (range: 0.03–2.85) for walking, and the mean adjusted R2 is 0.89 (range: 0.74–0.98) and

mean RMSE 1.55 (range: 0.07–7.7) for running.

3.4 Effect of participants’ gender on the prediction equations

When testing for the effect of gender, we found that the meaningful coefficients (Eq 5) were

lower than 1 for all but one of the lower-limb joint variables (hip angle in the frontal plane).

Table 3. Evaluation of the final fit (Stage 2) equations for each lower-limb joint variable, averaged on surface gradients, for running at 2.25 m/s.

Final fit, f(slope, stride cycle %), running at 2.25 m/s

Sagittal plane

(x-axis)

Frontal plane

(y-axis)

Transverse plane

(z-axis)

Parameter Series order R2
Adj RMSE Series order R2

Adj RMSE Series order R2
Adj RMSE

Ankle Angle [o] 3 1 0.78 5 0.99 0.37 3.5� 0.90 1

Knee Angle [o] 2 0.99 1.9 4.5� 0.66 0.68 5 0.97 0.62

Hip Angle [o] 3 1 0.53 3 0.99 0.42 5 0.77 0.59

Ankle Moment [Nm/)kg�m)] 3 0.99 0.04 4 0.98 0.01 3.5� 0.72 0.01

Knee Moment [Nm/)kg�m)] 4 0.99 0.03 3.5� 0.93 0.02 5 0.98 0.01

Hip Moment [Nm/)kg�m)] 4.5� 0.99 0.03 5 0.99 0.03 4 0.96 0.01

Ankle Power [W/)kg�m)] 5 0.99 0.1 11.5� 0.99 0.01 12 0.80 0.01

Knee Power [W/)kg�m)] 7 0.98 0.12 13 0.94 0.01 11.5� 0.85 0.01

Hip Power [W/)kg�m)] 8 0.98 0.04 10 0.91 0.08 12.5� 0.92 0.01

�Note: Half values indicate that one of the coefficients (δi, γi) was not statistically significant.

https://doi.org/10.1371/journal.pone.0269061.t003

Table 4. Evaluation of the final fit (Stage 2) equations for each lower-limb joint variable, averaged on surface gradients, for walking at 1.25 m/s.

Final fit, f(slope, stride cycle %), walking at 1.25 m/s

Sagittal plane

(x-axis)

Frontal plane

(y-axis)

Transverse plane

(z-axis)

Parameter Series order R2
Adj RMSE Series order R2

Adj RMSE Series order R2
Adj RMSE

Ankle Angle [o] 5 0.99 0.77 5 0.97 0.57 4 0.96 0.55

Knee Angle [o] 3 1 1.15 5 0.72 0.61 5 0.76 0.94

Hip Angle [o] 3 1 0.74 3 0.99 0.43 5 0.93 0.51

Ankle Moment [Nm/)kg�m)] 4 0.99 0.03 4 0.97 0.01 5 0.93 0.00

Knee Moment [Nm/)kg�m)] 5 0.99 0.02 4.5� 0.97 0.01 5 0.98 0.01

Hip Moment [Nm/)kg�m)] 3.5� 0.98 0.03 5 0.99 0.02 4 0.96 0.01

Ankle Power [W/)kg�m)] 7 0.98 0.05 12.5� 0.91 0.01 14.5� 0.92 0.00

Knee Power [W/)kg�m)] 8 0.98 0.04 15 0.82 0.01 12 0.88 0.01

Hip Power [W/)kg�m)] 5.5� 0.98 0.03 11 0.94 0.02 14 0.91 0.01

�Note: Half values indicate that one of the coefficients (δi. γi) was not statistically significant.

https://doi.org/10.1371/journal.pone.0269061.t004
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This indicated that the differences between the two genders’ models were smaller than the

errors between the experimental data and models themselves. A visual inspection also showed

the models were qualitatively similar (Fig 9). The only exception was that the models for the

hip angle in the frontal plane had an mc greater than 1 for walking (mc = 1.385) and very close

to 1 for running (mc = 0.962).

3.5 Stride cycle time and length as a function of surface gradient

One use of the stride-cycle time is to calculate joint work (Eq 7) since the lower-limb joint var-

iable predicted using the predication equation are time-normalized. We fitted polynomial

regression equations for both stride time and length for running (Eqs 8 and 9, R2 = 0.95) and

walking (Eqs 10 and 11, R2 = 0.99):

Stride Time ¼ 0:7361 � 0:0006 � SG ð8Þ

Stride Length ¼ 1:6561 � 0:0014 � SG ð9Þ

Stride Time ¼ 0:0039þ 0:0006 � SG � 1�10� 4 � SG2 ð10Þ

Stride Length ¼ 1:3574þ 0:0049 � SG � 1�10� 4 � SG2 ð11Þ

Fig 4. Sagittal plane lower-limb joint angles’ final fits (Stage 2) for running at 2.25 m/s as a function of surface gradient (-10%, -5%, 0%,

+5%, +10%) and stride cycle percentage (0% is heel strike) compared with experimental data. The dotted line represents fit, while the gray line

represents average data across all participants. The gray shading is the between-participants variability represented with one standard deviation.

https://doi.org/10.1371/journal.pone.0269061.g004
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where SG is the Surface Gradient (%). Examination of the average stride time revealed that

running cycle time doesn’t change as a function of the surface gradient, while walking cycle

time increase as the surface gradient is increased (Tables 5 and 6).

3.6 Estimation of joint work as a function of surface gradient

This section presents the potential use of the prediction equations for estimating joint work.

Normalized joint work was calculated using Eq 6 and then multiplied by average stride time

estimated in section 3.4, producing the average work per stride cycle. This joint work estima-

tion was calculated for each joint (in three anatomical planes for both walking and running) as

a function of the surface gradient (Fig 10). The results reveal that most of the walking and run-

ning work is performed in the sagittal plane and that the amount of positive work increases as

slopes change from negative to positive. Also, when walking on negative slopes, most of the

negative work in the sagittal plane is performed by the knees; on positive slopes, most of the

positive work is performed by the hips. When running, the knee provides a great amount of

negative work, regardless of the slope, while the ankle’s negative joint work is relatively con-

stant. Moving from negative to positive slopes increases the positive work. Hips provided rela-

tively small negative joint work and larger positive work, which both increase as the runners

move from negative to positive slopes. In the frontal plane, the hips show a change in the

amount of negative and positive joint work as the slope angle increases.

Fig 5. Sagittal plane lower-limb joint moments’ final fits for walking at 1.25 m/s as a function of surface gradient (-15%, -10%, 0%,

+10%, +15%) and stride cycle percentage (0% is heel strike) compared with experimental data. The dotted line represents fit, and the gray

line represents average data across all participants. The gray shading is the between-participants variability represented with one standard

deviation. The moments are normalized by the participants’ height and mass.

https://doi.org/10.1371/journal.pone.0269061.g005
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4. Discussion

In this study, we develop prediction equations for average lower-limb joint kinematics and

kinetics time series data over a stride cycle during human walking (1.25 m/s) and running at a

slow speed (2.25 m/s) on different surface gradients. These equations could be useful in many

applications, such as a reference for an exoskeleton, a prosthesis, or a walking robot controller

as well as for device optimization. They may also be useful as an educational tool, enabling stu-

dents to produce joint parameters of many gait states and analyze them, tasks that would be

much harder to perform using raw data.

The experimental lower-limb joint angle, moment, and mechanical power data for hip,

knee, and ankle show similar patterns to previous sagittal plane data [16,22,31]. We also devel-

oped a separate set of equations for each anatomical plane. The final fit Fourier equations

reached high adjusted R2 values for most parameters. The best adjusted R2 values were in the

sagittal plane and slightly less in the frontal and transverse planes, indicating a high goodness-

of-fit. In several parameters in the frontal and transverse planes (e.g., knee angle; see Tables 3

and 4),

Most of the sources of poor fit are due to the first coefficients of the polynomial regression,

which are not well fitted (S2 File, S2A Fig). Thus, while the final fit follows the averaged signal,

Fig 6. Sagittal plane lower-limb joint mechanical powers’ final fits for walking at 1.25 m/s as a function of surface gradient (-15%,

-10%, 0%, +10%, +15%) and stride cycle percentage (0% is heel strike) compared with experimental data. The dotted line represents fit,

and the gray line represents average data across all participants. The gray shading is the between- participants variability represented with

one standard deviation. The powers are normalized by the participants’ height and mass.

https://doi.org/10.1371/journal.pone.0269061.g006
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there is an offset at each slope (S2B Fig). This results in low adjusted R2 values, even though

the initial fit for each slope was very good individually.

With regard to the participants’ gender effect on the prediction equations, we found that

only hip angle in the frontal plane was affected. This is in line with previous studies, which

Fig 7. Examples of fit results in the frontal and transverse planes for walking at 1.25 m/s. A: Ankle, knee, and hip moment in the frontal plane (y-axis).

B: Ankle, knee, and hip angle in the transverse plane (z-axis). The gray area represents ± 1 standard deviation.

https://doi.org/10.1371/journal.pone.0269061.g007

Fig 8. Comparison between the final fits and data on the sagittal plane from two participants not included in the

model’s training, featuring lower-limb joint variables for running at a -10% surface gradient as a function of stride

cycle percentage (0% is heel strike) compared with experimental data. The dotted line represents fit, and the gray line

represents the two test participants’ average cycle data. The gray shading is the between- participants variability

represented with three standard deviations.

https://doi.org/10.1371/journal.pone.0269061.g008

PLOS ONE Prediction equations for lower-limb joint kinematics and kinetics during walking and running on slopes

PLOS ONE | https://doi.org/10.1371/journal.pone.0269061 August 4, 2022 14 / 21

https://doi.org/10.1371/journal.pone.0269061.g007
https://doi.org/10.1371/journal.pone.0269061.g008
https://doi.org/10.1371/journal.pone.0269061


found gender-related differences in hip adduction during walking and running [32–34]. These

differences occur during the termination of the swing phase and initiation of the stance phase

for both walking and running. Given that women show larger hip adduction compared to

men, we developed additional models for the walking and running hip angles of men and

women separately (see S1 Data). However, since the overall similar motion patterns and vari-

ability between participants (see S3 Fig), we also provided a prediction equation for men and

women collectively. It should be mentioned that the group sizes were relatively small (7 partic-

ipants of each gender), and a larger sample could provide more parameters in which men and

women are statistically different.

Despite the general success of our approach, in terms of high R2, the use of data for only

one walking and one running speed may have limited its utility. Hence, future studies should

extend our approach to different speeds as an input parameter. For instance, Eqs 2–4 can be

modified as follows:

b0 ¼ a0 þ
Pm
j¼1
aj � SG

j þ bj � S
j þ cj�SG

j � Sj ð12Þ

di ¼ di0 þ
Pm
j¼1
dij � SG

j þ eij � S
j þ fij�SG

j � Sj ð13Þ

gi ¼ gi0 þ
Pm
j¼1
gij � SG

j þ hij � S
j þ kij�SG

j � Sj ð14Þ

Fig 9. Examples and data distributions of the two models for each gender (male and female), with the dark and light gray

shading represent averaged signal ± 3 standard deviations for male and female participants, respectively. A: Data and fit

of the hip angle in the sagittal plane while running at 2.25m/s at a 0% slope. B: Data and fit of the ankle moment in the sagittal

plane while walking at 1.25m/s at a -15% slope.

https://doi.org/10.1371/journal.pone.0269061.g009

Table 5. Running (2.25 m/s) cycle time (s) over a range of surface gradients.

Surface Gradient (%)

-10 -5 0 5 10

Average 0.74 0.74 0.74 0.73 0.73

Between- participants standard deviation 0.03 0.04 0.04 0.04 0.03

Within- participants average standard deviation 0.02 0.01 0.01 0.01 0.01

https://doi.org/10.1371/journal.pone.0269061.t005
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where SG is the surface gradient, S is running or walking speed, i is the index for the coeffi-

cients from Eq 1, j is the index of the polynomial component, andm is the polynomial order.

During the experiment, the type of running (i.e., rearfoot, forefoot or midfoot running) was

not controlled. However, post hoc examination of the data revealed that one of the participants

was a forefoot runner while the rest were rearfoot runners; moreover, three of the rearfoot run-

ners ran using forefoot or midfoot strikes on the greatest slopes (10%, -10%). The prediction

equations were developed using a mixture of these running types and therefore represent the

participants average behavior. Future work can focus on the differences between runners and

the effect of the foot-strike on the prediction equations.

Notably, this study utilized a single foot segment to calculate ankle kinetics and kinematics.

However, it was shown that using a more complex multi-segment model of the foot results in

slightly different ankle kinematics and power output, while the torque stays extremely similar

in the sagittal plane [35–39]. This, however, does not affect the knee and hip calculations.

As described in the Methods section, this study was conducted in two different facilities

(BGU and NCSU) by different staff using different equipment. By using the same marker set

(despite collecting the data in two different labs with different types of equipment and different

staff), yet the only correction that was applied was for the knee angle offset. This is due to the

markers being placed in slightly different locations by the staff at the two labs, which led to a

small bias in the averaged knee-joint angle but not the angle profile. This offset was corrected

via substruction of the mean and affects only the angle and no other kinematics and kinetics

variables. Note that, in theory, the changing marker placement might cause rotation of the

joint coordinate system, and this will affect the angles at all three planes.

This study utilized a very common model (CAST [25]) for measuring human motion; how-

ever, this is not the only available model. A comparison of five prevalent models reveled that in

the sagittal panel, the trajectories of all five models were similar (although in some of them, an

offset correction was required). Yet, in the transverse and frontal planes, for several parame-

ters, some of the models produced similar results while others did not [30].

Although the study participants were fairly young (24.56 ± 3.16 years), the literature shows

that the kinetics and kinematics in the lower-limb joints were similar until approximately 40

years old [40,41]. Moreover, since the variability between participants is large in comparison

to the differences across ages, it is highly likely that older participants display similar walking

and running patterns [40,41]. Thus, the prediction equations could be used (with caution) for

older, healthy populations.

Our predictive model equations with simple parameter input structures can generate time

series data over a surface gradient continuum that may otherwise require exhaustive data col-

lection and analysis. For example, our equations can be used to simulate or generate joint

dynamics data for walking and slow human running when a properly equipped gait laboratory

is not available. Similarly, our prediction equations can save the time and effort required to

directly obtain, through measurement, secondary metrics based on lower-limb joint dynamics,

including mechanical work (section 3.6), range of motion (minimum and maximum values of

Table 6. Walking (1.25 m/s) cycle time (s) over a range of surface gradients.

Surface Gradient (%)

-15 -10 0 10 15

Average 1.00 1.04 1.08 1.12 1.11

Between- participants standard deviation 0.05 0.05 0.05 0.07 0.06

Within- participants average standard deviation 0.03 0.02 0.02 0.03 0.03

https://doi.org/10.1371/journal.pone.0269061.t006
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the angle profiles), and joint stiffness (movement as a function of the joint angle). Metrics such

as these might prove useful for setting lower-limb orthosis and prosthesis design requirements,

as well as those for other wearable devices that assist or augment human locomotion. Finally,

our equations may also prove very useful in any application that requires comparison to an

average normative data set, such as when assessing changes in function due to musculoskeletal

or neurological impairment. However, they may not be useful when the effect of the

impairment is only on gait variability Furthermore, this approach and our code (in the S1

Data) can be utilized in biomechanical classes for comparison to inverse dynamics results, and

also to enable several analyses without a gait lab (e.g., find which joint provides the most posi-

tive work when walking on a 10% slope, explore how the knee-joint work changes on negative

to positive slopes when walking, etc.).

Lastly, it is possible that our approach may trigger the creation of an open-source digital

library that extends the ideas put forth previously in textbook appendices [15] and online data

sources [42,43] to compile data sets for human locomotion researchers to draw upon. For

example, models with the framework presented here can be constantly improved with new

Fig 10. Positive and negative work per stride cycle as a function of the surface gradient in three anatomical planes

(top panel: Running; bottom panel: Walking). The bar above zero represents positive work performed in the joint

during a stride cycle; the bar below zero represents negative joint work.

https://doi.org/10.1371/journal.pone.0269061.g010
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data tagged by several salient input parameters (e.g., gait mode, speed, surface gradient), then

collected into a central digital location from many different laboratories.

Supporting information

S1 Fig. Marker placements based on the CAST marker set [25]. The group of markers

named RTH1, RTH2, RTH3, and RTH4, the group named RSK1, RSK2, RSK3, and RSK4, and

the markers on the back (RPS, LPS, IP) are rigid clusters of markers placed on acrylic glass

plates.

(TIF)

S2 Fig. Demonstrates an example in which a participant’s knee-joint angle in the frontal

plane displays an averaged adjusted R2 of 0.66. A: First five coefficients from the prediction

equation of the knee-joint angle in the frontal plane, where the black dots represent the value

of each slope, and the gray line is the fit for that coefficient. Note that for βo, the fit has an error

in the order of 1 degree. B: Final fit when running at five different slopes. The gray line repre-

sents the average between participants, and the dotted line represents the predicted signal (fit);

there is a constant offset (due to the difference in βo and the average signal).

(TIF)

S3 Fig. Differences in the separate male and female participant models, hip angle on the fron-

tal plane (y-axis); A: Walking; B: Running. The gray lines represent male participants, and the

black lines represents female participants. Each line represents a slope’s average. Note that the

main differences between genders appear at the beginning and toward the end of the gait, with

the gait cycle measured from heal strike to heal strike.

(TIF)

S1 Table. Lower-limb joint angle orientations: Direction and type of movement in three

anatomical planes.

(DOCX)

S1 File. An example of using the final fit equations to predict lower-limb joint variables.

(DOCX)

S2 File. Prediction equations in three anatomical planes: Examination of difficulties in

modeling joint variables (i.e., angles, moment, power).

(DOCX)

S3 File. Content of supplementary data.

(DOCX)

S1 Data.

(RAR)
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