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Introduction 
Whole Body Angular Momentum (WBAM) is a useful metric to 
measure a person’s stability during locomotion [1]. However, it 
is typically calculated from motion capture data, which limits its 
use to laboratory settings. Additionally, the need for post hoc 
processing of inverse kinematics inhibits the real-time use of 
WBAM as biofeedback. Machine learning techniques could be 
used to estimate WBAM from wearable sensors rather than 
marker data, enabling mobile collection and real-time use. In this 
study, we aimed to investigate how well a simple machine 
learning model could estimate WBAM from wearable sensors on 
the participant’s lower limbs.  
 
Methods 
One participant walked at 1.25 m/s on a treadmill embedded in a 
six degree-of-freedom moving platform (CAREN, Motek 
Medical, Netherlands). We applied 288 perturbations that varied 
in magnitude, direction, and timing, providing a diverse data set 
for creating a machine learning model. We collected data from a 
full body marker set and six six-axis inertial measurement units 
(IMUs) positioned on the shank, thigh, and pelvis segments (Fig. 
1, A). We calculated frontal WBAM using OpenSim and custom 
scripts.  

Using an initial sliding window length of 250 ms, we 
performed feature extraction on the sensor data for six features 
[2]. Our approach used a linear regressor. We began optimizing 
the model using forward feature selection to determine which of 
the 36 sensor locations and channels created the most accurate 
model. Then, we used the same process to optimize the feature 
type. Lastly, we performed window size optimization on the 
chosen feature set. We used five-fold validation at each level of 
optimization (Fig. 1, B).  Root Mean Squared Error (RMSE) was 
used to determine the accuracy of the models’ estimations. 
 
Results and Discussion 
The final optimized model used 16 of the 36 sensor channels, all 
6 feature types, and a window size of 250 ms. Of the sensor 
channels selected, all six gyroscopes in the z-direction were used 

in this model, which was expected because they are most aligned 
with the frontal plane rotation of the segments. The optimized 
model had an RMSE of 11% of the average steady state peak to 
peak WBAM and an R2 value of 0.909 (Fig. 1, C). 

The optimized model tracks steady state well, however, when 
a disturbance to WBAM is caused by a perturbation, the model 
drifts outside the average RMSE. Due to the cyclic nature of 
steady state WBAM, the model may depend more heavily on data 
earlier in the sliding window which may not represent the 
perturbed WBAM values being estimated. Another possibility is 
an imbalance in the training set between steady state and 
perturbed data, which can skew the model towards the more 
represented data type.  Additionally, we did not collect data from 
the arms, which could also explain the inability to accurately 
predict WBAM during a perturbation. Overall, the linear 
regression model was able to estimate WBAM with an average 
accuracy of 89%, but a more complex model may be more 
successful at tracking WBAM during a perturbation. 
 
Significance 
Tracking of WBAM using IMUs could provide a valuable source 
of real-time feedback to inform exoskeleton control or 
biofeedback-based interventions for augmenting biomechanical 
stability. Future work will include estimates for sagittal and 
transverse WBAM as well as examine more complex machine 
learning models, such as a Gaussian regressions or neural 
networks. Long-term, we aim to apply wearable sensor-based 
WBAM estimation to track and modulate locomotor stability 
beyond the confines of the lab. 
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Figure 1: (A) We placed IMUs(blue) on the subject’s lower limbs. (B) The optimization methods are demonstrated in a flow chart. (C) A time series 
graph of Actual and Estimated WBAM with an indicated perturbation onset is shown on the left. The correlation graph of Actual and Estimated WBAM 
is shown on the right where the expected best fit line is plotted in green. 


