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In 1927 Einsteifh presented a precursor of the much bettergives an incomplete description of the ball, in the sense that
known argument of Einstein—Podolsky—Ros@&PR? that its location is definitely in B or B, even when the wave
the quantum mechanical description of physical reality isfunction does not vanish identically in either box, one is not
either incomplete or violates locality by tacitly assuming su-forced to accept non-local causality as the only alternative.
perluminal causality in the measurement process. He prorpg |ggical determination of the truth value assignedo

posed a thought experiment in which the support of the Wave L oo the truth value 00, is determined by measurement

function of a ball is contained within two boxes; Bnd B, (or conversely does not constitute an act of causalit
that are carried arbitrarily far from each other. When a mea- ; ; . . 1y
This statement is made with a minimum commitment to

surement is performed to detect whether the ball is,in it any explanation of the relation between the quantum theory

only is a positive or negative answer found regarding tha s !
: : L ‘ of measurement and relativistic space—time structure. One
box, but simultaneously a negative or positive answer is ob- P

taned regaring b £ He condluced hat et the wave ECSSE SXOTon s e proposa by Feming ana et
function is an incomplete description of the ball, requiring J q P

supplementation by additional information concerning its Io-‘;’lnS g Wﬁvf func:]ltornrln teaf:: ;efefrilncrgr_arrtlﬁ. 'I;]hen_only cllalm
cation, or else an experimental intervention in iBxmedi- ade here, contrary 1o that of INorsems the non-causa

ately causes a determination of its presence or absence gmaracter of the mutual determination of the truth values of

B,, which would constitute non-local causation. 1andQ,. I
Norser has deplored the neglect of Einstein's “box” ar- A corollary of my claim is that the EPR argument for the

gument, claiming not only that it is valid, but is superior to INcompatibility of locality with the completeness of a quan-
EPR because of its simplicity: it involves only a single sys-tum mechanical description of physical reality is definitively
tem, considers only the position of that system rather than &tronger than the box argument. The quantum state studied
pair of non-commuting properties, and above all avoids thdy EPR is an entangled two-particle state, which is a contin-
need to invoke counterfactual reasonit§PR not only in-  gency. If the two-particle state were a product state, then the
fers the position of particle | from the position of particle II, strict correlation of the positions of particles 1 and 2 and the
or vice versa if position is measured on one of the particlesstrict correlation of the momenta 1 and 2 could not be de-
but they infer the momentum of one particle from the mo-rived, and therefore the strict relation of the projections onto
mentum of the other if momentum is measured on either. regions of position space and the strict relation of the projec-
However, there is a serious flaw in Norsen’s defense of théions onto regions of momentum space are not matters of
box argument in my opinion. I®, is the projection operator logic. Therefore EPR is justified in concluding that the only
representing the physical proposition that the ball is in B way to save local causality is to postulate the incompleteness
andQ, is the projection operator corresponding to the ball'sof the quantum mechanical description, and, as we now
location in B,, then the logical structure of the lattice of know, this conclusion opens the path to Bell's theorem and to
projections in the quantum mechanics of localizable system#e experiments that strongly point to non-locality in the

ensures tha®, andQ, are orthogonal, that is, physical world.
_ _o 1 A final remark concerns Norsen’s argument that the EPR
Q1Q2=Q2Q:=0, (@) argument is inferior to the box argument because of its reli-

independently of the quantum state of the ball. Hence anynce on counterfactual reasoning. Although many scholars
state that is an eigenstate @Qf with eigenvalue 1 or 0 will accept that characterization of EPR’s argumentation, it has
also be an eigenstate @, with respective eigenvalue 0 or 1. been plausibly maintained by d’Espaghand Shimony that
(The relation ofQ; andQ, to B; and B,, which is accepted EPR's reasoning for the strict correlation of the positions and
intuitively by physicists, is generalized and presented withthe momenta of the two particles can be carried out by ordi-
mathematical rigor in Mackey’s discussfoof projection-  nary inductive logic, using four subensembles of the entire
valued measures on Borel spag¢dBecause Eq(l) is inde- ensemble of particle pairs, with no reliance on counterfactual
pendent of the quantum state of the ball, the inference from gonditionals.

measurement yielding the location or non-location of the ball In spite of the foregoing criticisms, Norsedeserves rec-

in B, to the respective non-location or location i Boes  ognition for his examination of the box argument, which has
not rely on any contingencies, and therefore it is fair to saysubtleties worthy of further study, particularly concerning the
that it is a matter of logic rather than of causality. Hence iftemporal relation of logically equivalent events in regions
one rejects Einstein’s contention that quantum mechanicwith spacelike separation.
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| give an extended analysis of the very simple game that | previously published that shows the

paradoxical behavior whereby two losing games randomly combine to form a winning game. The

game, modeled on a random walk, requires only two states and is described by a first-order Markov
process. ©2005 American Association of Physics Teachers.
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I. INTRODUCTION same ratio of wins to losses. For game 1 we calcugxe2)/

. (4Xx5)=16/20, which is equal to the ratio calculated in Ref. 4
_ In 19867 my colleagues and | posed the following gqq] to((2/7)x(2/3))/((5/7)  (1/3))=4/5. The identical ratio
paradox.” Consider a random walk on a cycle of bases,y'\ying 1o losses holds for game 2, so clearly each game is
g_overned by one of two sets_of transition constants for stePyne that on average the player loses.
ping between the bases. Using either set alone, the walk IS ¢ gjtyation is dramatically different when we combine
biased to favor completion of a counterclockwise cycle.qames 1 and 2 by flipping a coin after each roll of the dice to
However, either periodicor randort alternation between the  ggjoct the rule set by which the next decision is made. The
two sets causes net clockwise cycling! _ correct way of calculating the result of combining the two
_ Tolillustrate as simply as possible this paradoxical behavyames by a coin flip is to average the frequencies for step-
o, | PUbI'Shea a very simple game played with a checker ping left and right. The coin flip randomizes the chance of
stepping on part of a checkerboard. The stepping is decideg,ving by rule set 1 or by rule set 2 on each roll of the dice.
by the roll of a pair of dice. Alternation between two sets of g4 ing at the middle there is a 50/50 chance of playing by
rules for the stepping is achieved by flipping a coin. In @y set 1, for which the frequency of displacement to the
recent papérMﬂartln and von Baeyer discussed these “As- ight is 2/36, and a 50/50 chance of playing by rule set 2 for
tumian games” and asserted that my analysis was flaweqyhich the frequency of displacement to the right is 8/36.
and that the game does not display the paradoxical behavigy 5 the net chance of being displaced to the right on the
that | claimed. They further claimed that “the inherent sym- eyt o)l is 10/72. Exactly the same 10/72 holds for the fre-

metry of Astumian’s game prevents it from achieving its pur-g,ency of displacement to the right from a white square. The
pose.” Here, | give an extended description of my game an(g

a special case of my model that is different than the case of}in more often than we logg10x 10)/(9%9), i.e., 55% wins
which | focused, and that, in general, my game does Show, hacted even though when playing either game alone we

the paradoxical behavior first demonstrated in Refs. 1 and 3 5a more often than we WIH8X2)/(5X4), i.e., 45% wins
The game is illustrated in Fig. 1. A checker is placed ONexpected R

the middle square of a sequence of five squares. The object is

to reach the square marked “win” before reaching the square

marked “lose” by rolling the dice and displacing the checker || KINETIC BARRIER REPRESENTATION

according to one of two possible sets of rules. Apparently,

Martin and von Baeyérmisread the rules of my game and In Fig. 2 the game is translated into a “kinetic barrier”
took a move to mean only a physical displacement of thediagram? commonly used to describe biochemical processes.
checker rather than a turn consisting of rolling the dice andn this picture, the mechanism by which the paradoxical re-
following the instructions on the relevant rule table. In their sults of Ref. 2 arise becomes clearer. If we play either game
picture, the checker is displaced either to the left or right oralone, the net tilt from right to left leads inexorably to more
each move and the sum of the transition probabilities to théosses than wins. However, things are very different if we flip
left and to the right from any square is constrained to be onea coin before each roll of the dice to determine whether the
In my game, however, which is inspired by a Monte Carlonext decision will be made according to rule set 1 or rule set
simulation of a random walk, there are three possibilities for2, effectively averaging the frequencies. In the combined
the checker on each move: step left, step right, or stay pugame, the frequency for a transition to the left from either a
When we play a single game, both interpretations lead to thblack or white square is 5/36 and for a transition to the right
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Fig. 1. (a) The simplest Astumian Game is played with a checker on fiverig 2. Kinetic barrier diagram representation of the game. The barriers are
squares of a checker board. The stepping of the checker toward a “win” ofyroportional to the log of the inverse frequencies, and the difference in

“loss” is governed by the roll of a pair of dice according to one of the two |eyels between adjacent B and W squares depend on the log of the ratio of
rule tables labeled(H) and 2T). For each roll there are three possibilities— frequencies as shown. We arbitrarily set the level of the starting square to
step left(L), step right(R), or step in placéN). The rolls that trigger each  zerg, The net tendency is to move from high to low, so it is apparent from

response depend on whether the checker is on a Hlor white (W) the net tilt to the left that both game 1 and game 2 on average are losing
square. Thus, when on the center black square playing game one, if an 11 $opositions. When we combine the games by flipping the coin, the frequen-
rolled (2 ways out of 36 possible rolisthe checker is moved to the white  ¢jes are averaged, resulting in the kinetic barrier diagram for the combined

square on the right; if a 2, 4, or 12 is rolled rolls out of 36, the checker  game, which tilts to the right and is clearly, on average, a winning proposi-
is moved to the white square on the left; and on any other roll, the checkefjgn.

remains on the central black square and the dice are rolled again. When the

checker is on either white squares, the checker is moved one square to the

right on a roll of 7 or 11(there are 8 ways out of the 36 total possible nolls

and on a roll of 2, 3, or 124 rolls out of 36 the checker is moved to the Figure ](c) shows a “probability tree” for the Astumian
left. In the randomly combined game a coin is flipped before each roll. If thegame_ The ratio of wins to losses for either game is
coin lands on heads, the following roll is played according to Talh),1 Pe.iPwi /(qB’qu’i), withi=1, 2 denoting game 1 or 2. The

and if it lands tails, the following roll is played according to Tabl@ 2 (b) \ ! LT .
A random walk diagram for the game. The dashed circular arrows indicard@ndom combination of the two games by flipping a coin

the “self transitions” with probabilities s on a black square and, on a  r€sults in averaging thg's andg’s so in the combined game
white square(c) A probability tree for the random walk. Martin and von the ratio of wins to losses is p(yi1tpPw2)(Ps1

Baeyer (Ref. 4 analyzed only the special case that=r\,=0 for both +pe)/[(Aw1+Aw2)(ds 1+ 0s2)]. For the paradox, we

games. need
Pw,1PB,1<0w,198,1 (1a)
from either color square is 4.5/36. Thus the kinetic barrier  p,, ,pg ,<Qw 20z 2, (1b)
diagram for the combined game now tilts to the right, leading o S
inexorably to more wins than losses. (Pw,1tPw.2)(Pe,1t Pe2) > (dw,1t dw,2) (A 1t QB,z),(l )
C
which is very easily met, for example, with the values given
Ill. THE GAME AS A RANDOM WALK in the tables in Fig. (). Taking the case, however, that

self-transition probabilities from black and white in each
game are the sameg;=ry=r; andrg,=ry,=r, (r;
=r,=0, the case treated by Martin and von Baeyer, is a
special case of thjsand writing theq's in terms of ther’s,
Egs.(2a), (2b), and(2c) lead to(3a), (3b), and(3c), respec-

In Fig. 1(b), the game is illustrated as a random walk on a
one-dimensional lattice with two states, “BlackB) and
“White” (W). The probabilities for a transition to the left are
denoted bygg andqy, and the probabilities for a transition
to the right are denoted bpg and py. The rg=1

— Ps(w) — ds(w) denote the probability that no transition oc- tively,

curs on a given move, and so are a measure of the lifetime on  (py,;+pg 1) <(1-ry), (29
a particular square. In the literature a move in which no

transition occurs is often termed a “self-transition.” (Pw2t P2 <(1-r3), (2b)
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a) the region in whichp+q<1 and (1-p)+q<1] and g?
Game 1 Garie 2 =p(1—p), which defines the region in which the two games
: 2 are individually biased to favor counter-clockwise cycling.
m f:\ The paradox occurs in the shaded region because fay all
B w B W < 0.5 the combined game is biased to favor clockwise cy-
S N~
1-p p

cling.

Combined Game
05

V. GENERALIZED ASTUMIAN GAMES

Imagine that instead of moving on only five squares, the
checkerboard rank extends indefinitely from the starting
point in both directions, and we take a model with general
forward (pg; and py ;) and backward g ; andqy,;) fre-
quencies between zero and one, whietel, 2, orc, with ¢
denoting the combined games. This is a “modulo-2” game
because there are only two color squares: black and white.

We allow the possibility of flipping two different, possibly
biased, coins to determine which of the two games is played
on the next roll; one coin if the checker is on the black
square, with probability to land heallg, and the other if the
checker is on the white square, with the probability to land
headsh,,. For any of the game&ncluding the combined
game the average gairG;, for then+1st roll is

Gi(n+1)=(pg,;i—g,i)Ps(nN)+ (Pw,;—qw,)(1— PB(”))-(3)

Pg(n), the probability that the checker is on a black square
F|g 3. (a) Compact Cyc|e diagrams for the Astumian game with the very after thenth r0||, can be Calculated from the recursion rela'
simple two-parameter case discussed in Sec(HVA graphical illustration tion

of the region in{p,q} parameter space in which the paradoxical behavior

occurs. The total transition probability out of either state must be lessthan 1,  Pg(n)=(1—pg;—0g,i)Pg(n—1)

that is,p+g<1 and (1-p)+q<1 so that only the region above the line

p=g and below the lingg=1—q is consistent with the transition probabili- +( Pw,it+ QW,i)(l_ Pg(n— 1)), (4)

ties for this model. The two games are individually losing only wiggn . . .

shaded areas define the region where the paradoxical reversal from losing faction on white that moves to black in a given roll. The
winning by a random combination occurs. probability that the checker is on a white square is obviously
Pw(n)=1-Pg(n) so the game involves only a single vari-
able. This game is a first-order Markov chain becaRgén)
(Pw,1t Pw2t Pe1tPe2) > (211~ T3), (20 depends only on the probability one step befoRy(n
which is a contradiction. Thus, the paradoxical reversal of 1). )
two losing games to a winning game by a random combina- 1he Stable solution to Eq4) occurs wherPg(n) =Pg(n

tion is impossible for games where the self-transition prob-—1). Hence, we find
abilities from black and white are the same in each game.
s Pw,i + Aw,i

B - .
IV. TWO PARAMETER MODEL FOR THE Pw,i T Aw,i T Pe,i T ds,i

PARADOXICAL BEHAVIOR We substitute Eq(5) into Eq. (1) and find the average dis-
placement once the stable solution has been reached:

®

As a very simple case we can demonstrate the “paradox
with only two parameters. Lefjg = Aw,1=0e2=dw2=0; Pw.iPe.i— dw. il
Pg.1=Pw2=p and py;=ps,=1—p, which leads torg, Gi= m FR— .
=rwi1=1—(p+q) andrg,=ry:=p—0d. We requirep+q Pw,i ™ Gw,i ™ Ps,i T g,
<1 and (1-p)+g<1. In either individual game, the ratio Clearly, the average gain is zeta condition known as de-
of wins to losses ip(1— p)/g? while in the combined game tailed balancgif and only if the product of the forward fre-
the ratio of wins to losses is 0d¥. In Fig. 3@ a compact quencies is equal to the product of the backward frequencies.
cycle representation, used in early studies of the parAiox, For the combined game the frequencies are the weighted
given. The completion of a clockwise cycle corresponds to @verages of the frequencies for games 1 and 2,
win, and the completion of a counterclockwise cycle corre-

(6)

sponds to a loss. The region of parameter spgage} in Pw,c=hwPw,1+ (1—hy)pw,2, (7a)
which the paradox occurs is graphically illustrated in Fig.
3(b), where we plot the curveg=p, q=1—p [this defines Ow,c=hwOw 1+ (1—hy)Aw2, (7b)
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Pg «=hpPe 1+ (1—hp)Pg 2, (7¢) dox when this difference is recognized—the drug should not
' ' ' be administered to males or to females. Note that there could
— be other “lurking” variables, such as age, which might re-
Gg.c=Mo0e 1 (1= N5) 0.2 (7d verse this concl%sion. This example shguld serve asga warn-
ing on how easy it is to fool ourselves with statistics unless
we understand all potential correlations between the data.
The reversal of losing games to form a winning game
when combined arises from a similar “hidden” correlation.
In the simplest Astumian game in Fig. 1, the checker tends to

=5/36, andqy ,=5/36. Clearly both games 1 and 2 indi- ggige on the black square for more rolls than on the white
vidually obey a detailed balandée product of the forward square in game 1H, but on the white square for more rolls

frequencies equals the product of the reverse frequenciespan on the black square in game 2T. Thus, it is more likely
but the combined game with,=h,=0.5 (pg,=13/36, for a checker on a white square to switch to game 2, where a
Pw,c= 13/36,9g =5/36, andqy = 5/36) does not. right transition is more likely than a left one, and for a
We could derive a condition for the detailed balance forchecker on a black square to switch to game 1, where once
the combined game directly by requiring thaty .ps.  again a transition to the right is more likely than one to the
—0Ow,cds =0 and substituting the transition probabilities left. The combination gives rise to a net tendency to move
from Eq. (5). A more elegant approach is to directly imposeright, even though in either game alone the tendency is to
microscopic reversibility. Thus, starting on black in gamemove left.
one, the probability to switch to game 2, move right, switch When we strip away the veneer of dice or coin games or of
to game 1, and move left must equal the probability to movedatasets, and we simply consider the counterintuitive behav-
right, switch to game 2, move left, and switch to game 1, itsior in terms of numbers, we see that the condition for Sim-

As pointed out in Ref. 2, the combined game need not dis
play detailed balance even if the individual games do. Con
sider the case with frequencigss ;=25/36, py =1/36,
Og,1=5/36, qy,1=5/36, andpg,=1/36, py=25/36, gg

microscopic reverse. That is, pson’s paradox to occur is to find numbers such toat
<b/B and c¢/C<d/D, but (@a+c)/(A+C)>(b+d)/(B
(1—hp)pg 2hwPw,1—As.1(1—hy)dw 2hp=0. (8  +D). For the drug example is the number of males who

took the drug and recovered awdis the total number of
Equation(8) is the same condition as that derived for de-Malés who took the drug, etc. The requirement for the As-

tailed balance using a diagram method for an enzyme kinetif!Mian game to demonstrate the paradoxical result is
model® The left-hand side is proportional to the average dis-Pw.1Pe.1/(Gwads ) <1 and pw.opsa2/(dwaels2) <1, but
placement, so it is obvious both formally as well asPw,cPe,.c/(Gw,.cdsc)>1. Obviously this requirement can be
intuitively’ that the deterministic strategy of always playing converted into the identical form for Simpson's paradox.

game 1 when on blackhg=1) and game 2 when on white Thus we conclude that the result that two losing games can

(h,=0) maximizes the win rate, and is better than any ranombine to form a winning game is, in fact, a variation of

dom strategy witth,=h,, . Simpson’s paradox.

VI. RELATIONSHIP TO SIMPSON’S PARADOX VII. MINIMAL MODEL FOR A BROWNIAN MOTOR

The condition for the paradoxical conversion of two losing The Astumian games clearly demonstrates that a first-
games into a winning game by statistically combining themorder Markov chain, a two-statenodulo-2 system, is suffi-
is G1, G,<0 andG.>0. This reversal is reminiscent of the cient to demonstrate the paradoxical behavior that two losing
well-known Simpson’s paraddkwhich refers to the reversal games can be combined to form a winning game. This game
of the direction of a comparison or an association when daté the discrete-time analog of the continuous time two-state
from several groups are combined to form a single grbup. chemical kinetic mechanisfhwhich is the minimal model

A classic exampf involves a drug test in which 30 males for a Brownian motol! Nonetheless, in addition to Ref. 4,
take a drug, and 18 recov&0%), but in a control group of other authors have incorrectly claimed that the minimal
10 males with the same illness whom do not take the drug, model for demonstrating the paradoxical reversal of the di-
recover anyway70%). Out of 10 females who take the drug, rection of a flow re%uires a second-ordéhree-state or
only 2 recover(20%), while in a control group 9 out of 30 modulo 3 system’*?>¥*Why have so many authors arrived
who do not take the drug recovi80%). Thus, it is clear that at the same erroneous conclusion? By reviewing these papers
there is no statistical evidence that the drug helps eithewe find that in all an unjustified constraint is placed on the
males or females. However, when we combine the data, weansition coefficients, namely that the sum of the transition
come up with a total of 40 people who took the drug, out ofconstants out of a state is required to equal one. In other
which 20 recoven50%), whereas in the aggregate control words, the system is not allowed to remain in the same state
group of 40 people with the illness who did not take thein any iteration. But in general, a particle undergoing a one-
drug, only 16 recovere®0%). From this perspective it ap- dimensional motion on a lattice can move forward, back-
pears that the drug is helpful. ward, or stay in the same place; a stock price tomorrow can

The paradoxical result—that the drug is deleterious wherbe greater than, less than, or equal to the price today; and in
considered from the perspective of males or females india game of chess, a player can win, lose, or draw. From where
vidually, but helpful when considered from the perspectivedid the idea come that there are only two possibilities?
of the overall population—arises from a hidden correlation. Perhaps the answer lies in the recent work of Juan Par-
Males, who are in general more likely to recover than areondo who introduced games based on tossing one of several
females, make up most of the experimental cohort, but febiased coins, in which also two losing games combine to
males make up most of the control cohort. There is no paraform a winning gameor vice versa'* Because the games
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are played with a coin, each flip of the coin results in acapable of demonstrating the paradoxical result by which
binary decision: win—lose, or left—right. To achieve the re-two losing games randomly combine to form a winning
quired asymmetry, one of the games Parrondo described iame. However, for the Astumian games, with unequal life-
volved a rather complicated rule where the coin to be flippedimes in two states, the combination itself breaks time sym-
is determined by the amount of money the player has on thahetry, and so a two-state model is sufficient.

turn. However, Parrondo’s “coin flip” games can be mapped

onto a Markov cycl&*identical to the cycles used in the VIIl. BREAKING TIME SYMMETRY

original formulation of the paradokexcept that the sum of

the two transition rates out of each state must equal one. The Any two-state Astumian game is clearly time symmetric—
authord?*®have pointed out that these resulting cycle mod-there is no way to distinguish a sequence, BayW— B,

els are time symmetric with fewer than three states, androm its reverse. When we combine the games, however, we
based on this made the claim that a three-state m@el must specify both the state of the checkBror W) and the
equivalently a modulo three systgns the minimal model state of the coifH or T). Let us compare a sequence:

1-hg pg,2+dp,2 hy Pw,1+dw,1
with the reverse of the sequence,

(pg,1+dB,1) 1-hy (Pw, 2+ Aw,2) hg

(B,H) — (W,H) —— (W,T) —— (B, T) —— (B,H).

The ratio of the probabilities for these two sequences is written in the compact cycle form shown in Fig@B The
B subscript denotes the chemical state, for example, phospho-
(1) (M) (Pe.2™ de.2) (Pw.a T Gw.) _ (9)  rylated (=1) or dephosphorylated € 2). The chemical en-
(1—hy)(hp)(Pe 1t ds,0) (Pw2t dw,2) ergy supply(for example, the hydrolysis of Adenosine Triph-
If the escape frequencies are different for some states thatsPhate, AT powers the random flipping between the two
for others, this ratio need not be unity even for a randonfhemical forrps. , o _
combination b, = h,) of the games, and the combined game Here, the_as and B's are rate constants, with d|r_n_en3|0ns
can thus be time asymmetric. The original continuous &meOf inverse time, rather than dimensionless transition prob-
and discrete timeAstumian games are composed of two abilities. Such biochemical cycles are often simulated by a
individual games, each of which is losing and time symmetMonte Carlo approachin which each transition is modeled
ric, and yet which randomly combine to form a winning &S & Poisson process. For the two-state model, the probability
ga,me with broken time symmetry. P(B,t+At|W,t) that a system in stat&/ at timet has made
When we insist that the lifetimes in the states are the sam@t least one ftransition to a surrounding st&eby time

[that is, @wit+dw)=(Peitds1) and (@Ewz+aws)  LTAL is
=(pg2t0s2], we lose the time asymmetry in the com-

t+At
bined two-state game; clearly in this case, fg=h,, the P(B,t+At|W,t)=J (ot By)e (ewrAwtdt
ratio of the probabilities for forward and reverse sequences is t
unity. As we have seen in Sec. lll, with this constraint the —1— e (aw+BwAt (11)

paradoxical reversal by a random combination of the

“‘games” is impossible. Time asymmetry can be restored by For sufficiently smallAt there will be at most one transi-
adding another state which builds asymmetry into one of theion during the interval so the transition probabilities to the
individual games, but this addition certainly does not lead tgeft and right are simply this total probability multiplied by
a minimal model as claimed in Ref. 12. the branching probabilities,

IX. FROM CHEMICAL KINETICS TO GAMES pWi=a+’,;(1—e*(“W*BWW), (129
ToawiT Pwi
The game was inspired by the earlier work on random ' I

walks on biochemical cyclesS which are represented by Bw.i i A
chemical kinetic models such as shown below. Wi = o T B -(1—e ™ (awrAwat), (12b)
W, i W,i
awi @i aw i
W=B=W=B, fwi =1 Pw,— dw,i (129

Be,i Bw,i Bsii . . . .
, i . with similar results, derived in the same way, foy;, dg;,
The time evolution of the system is given by andrg;. The evolution of the system is then simulated by
dPg iterating Eq.(4) with these values for the transition prob-
.~ (ewit Bw)(1—Pe)—(ap+Bsi)(Ps), (100 abilities over many time steps. This procedure effectively
converts the ordinary differential equatigh0) to the com-
where we have used conservatiBg+ P,y,=1. The system putationally amenable iterative form of E@). For this pro-
above describes a two-state cycle that could equally well beedure to reliably reproduce the solution of Ed0), it is
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essential thait be very small, and hence that the are all ~ (New York University and The Courant InstitateProfessor

close to 1. Rajiv Kohli (Columbia University, Professor Chris van den
Broek (Limburgs University, Professor Hal MartiNorth-
X. CONCLUSIONS ern Michigan University, and Professor Hans von Baeyer

) ] ] ] (The College of William and Mary
The Astumian games were first conceived to illustrate the

mechanism by which energy from a scalalirectionless aAE|ectronic address: astumian@maine.edu

chemical reaction can be used to power vectorial transport ofH. v. Westerhoff, T. Y. Tsong, P. B. Chock, Y. D. Chen, and R. D. As-

a Brownian motor that moves preferentially in one direction tumian, “How enzymes can capture and transmit free energy from an

along a polymeric lattice. The dice play the role of thermal oscillating electric field,” Proc. Natl. Acad. Sci. USB3, 4734-4737

noise, allowing the occasional transition from one square t02<1986- ) Chock ch J

the next. The net tendency to lose reflects the effect of ex- < D Astumian, P. B. Chock, T. Y. Tsong, Y. D. Chen, and H. V. Wester-
hoff, “Can free energy be transduced from electric noise?,” Proc. Natl.

ternal forces that tend to cause the motor to lose energy. TheAcad. Sci. USABA, 434—438(1987).

c_om toss r_nlmlcs th_e input of energy from the nonequilib- °R. D. Astumian, “Making molecules into motors,” Sci. An285, 56—64
rium chemical reaction that powers the motor. The reversal o0y,

from “losing” to “winning” addresses what | have always 44 martin and H. C. von Baeyer, “Simple games to illustrate Parrondo’s
considered one of the deepest paradoxes associated with MQaradox,” Am. J. Phys72, 710—714(2004.

lecular motors and pumps. In any chemical state, the motofJ. J. Burbaum, R. T. Raines, W. J. Alberry, and J. R. Knowles, “Evolu-
tends to move in the direction driven by any externally ap- tionary optimization of the catalytic effectiveness of an enzyme,” Bio-
plied force. If the motor, powered by a nonequilibrium reac- chemistry28, 9293-93051989.

tion, cycles through different chemical states, however, the’R- D. Astumian, P. B. Chock, T. Y. Tsong, and H. V. Westerhoff, “Effects
direction can be reversed, and the motor can move energeti-Of oscil_lations and energy driven quc‘tuations on the dynamics of enzyme
caIIy “uphill." The Astumian games show how randomly z:féggys and free-energy transduction,” Phys. Rev3% 6416—-6435
interleaving StQChaStIC events of gaméOhe chem|.cal state "R. lyengar and R. Kohli, “Why Parrondo’s paradox is irrelevant for utility
of the motoy with those of game 2a _d|fferent chemical Stat.e theory, stock buying, and the emergence of life,” CompleXty23—-27

of the motoj can reverse the predicted outcome of playing (2003.

game 1 or game 2 alone. It is important to note that thissg . simpson, “The interpretation of interaction in contingency tables,”
reversal is a purely statistical result—there need be no directy. R. stat. Soc. Ser. B. Methodd!3, 238—241(1951).

mechanical interaction between the coin and the che@ker  °D. Moore and G. McCabéntroduction to the Practice of Statisti¢Eree-
more subtly, between a biomolecular motor and the chemicalman, New York, 1998

reaction, for example, ATP hydrolysis, that provides the eni’This example is a realization of the simplest version of Simpson’s paradox
ergy for Switching other than that required to Change the with dice. Take orle 10-sided die, and one 20-sidec{§ﬁailab_le ?t many
rules. A thermodynamic analysis of the simple two-state novelty and gaming storgsYour nurr_1ber o_n the 10-sided die is(four
Brownian motor shows that the efficiency of energy conver- opponent has 2—10and on the 20-sided die your numbers are 1-16, and

sion for biologically realistic values of the parameters can be YOU" OPPonents are 17-20. You each take one of the two dice and roll it as
many times as it has sides. The winner is the one who rolls his/her num-
greater than 75%.

. . bers on their die more frequently. If you take the 10-sided die, you expect
2
The paradoxu:al effect uncovered by Astumitral.” has your number to come up once out of the ten r¢18%), while one of your

implications far beyond human games of chance. Every bio- gpponents numbers will on average appear on his/her die 4 out of the 20
logical catalyst{enzyme in our body is continually playing a  rolls (20%). Clearly, you will generally lose this game. On the other hand,
game of chance, whereby the random bindings of different if you take the 20-sided die, your number will appear 16 times out of the
molecules to the enzyme, governed by thermal “Brownian” 20 rolls on averagé80%), but your opponents number on the 10-sided die
noise in the environment, determine whether the molecule will appear 9 out of the 10 time®0%). Once again, you lose. However, if
(and hence the cellwins (for example, increases the cells’ you both roll the 10-sided die ten times, and the 20-sided die 20 times, you
energy capita)lor loses(decreases the cells’ energy capital expect your number to appear a total qf 17 times out of the totgl of 39 rolls
in that round. The ultimate fate of the cell, bankruptcy mean- (37%9. and your opponents number will appear a total of 13 times in the
ing death, is determined by playing in the limit of over- 30 rolls (43%). You win! For mpre on Slmpspns paradox, see the web site
whelmingly large numbers, with many random games asson<http:/-/plato'Stfinford'.EdUIem”eSIpar?dox_s'mp}son/ P

. ; ! . P. Reimann, “Brownian motors: Noisy transport far from equilibrium,
ciated with every enzyme. Any help the_ cell can find, for Phys. Rep361, 57—265(2002.
example, by the paradoxical results described here, can mov&, |ee A. Allison, D. Abbott, and H. E. Stanley, “A minimal Brownian

the cell toward survival and to evolutionary victory. ratchet, an exactly solvable model,” Phys. Rev. L&t, 220601-1-4
(2003.
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) ) _ Based on Brownian ratchets,” Phys. Rev. L&, 5226—-52292000.
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Comment on “How to hit home runs: Optimum baseball bat swing
parameters for maximum range trajectories,” by Gregory S. Sawicki,
Mont Hubbard, and William J. Stronge

[Am. J. Phys. 71 (11), 1152-1162 (2003)]

Robert K. Adair
Department of Physics, Yale University, P.O. Box 208121, New Haven, Connecticut 06520-8121

(Received 23 December 2003; accepted 22 July 004
[DOI: 10.1119/1.1794754

In their baseball analysis of batting against fast balls andirms, throwing on the run, throw with initial velocities at
curve balls, Sawicki, Hubbard, and Strohgencluded that least as large as assumed in the model and with about as
given a definite bat swing velocity, an optimally hit curve much backspin. However, these outfielders can throw balls a
ball will travel further than an optimally hit fast ball, al- maximum distance of only about 380 ft, from just in front of
though the fast ball will have a significantly higher velocity the warning track in center field to the plate on the*f§rom
at the point of the bat-ball impact. Moreover, they find thatmy own formulas, a ball hit with an initial velocity of 99.1
the optimum launch angle for hitting long balls, that is, homemph with a backspin of 1827 rpm will travel 354 ft if thrown
runs, is near 25°. As they note, their conclusions are in sharpt an optimum angle of about 35°. Using my model again, a

disagreement with the results of my anab?s'hghich con- all hlt with the batted curve ba” parameters of Ref 1, a
cluded that a struck fast ball will go further and that the velocity of 96.3 mph and a backspin of 2644 rpm, will travel
optimum launch angle is-35°. about 343 ft. These distances are in accord with Fig. 2.5 of

Ref. 2 and with my observations.

In Ref. 1 it d that the backspin of the ball pro- ! . o .
nme ' IS assumed mat the backspin o the ball pro Although my calculation of baseball trajectories is not in

jected from the bat must be greater when the overspinnin ccord with Ref. 1, | suggest that the primary error in their

Elijtr\é(; &ﬂ::;gfgg ;ﬁzg\lvﬁgrégie?afﬁessIgglnr::?ugaes tthbz:}(”trll esults is in their lift formulas. The lift force is in the direc-

backspin generates sufficient lift so that the struck curve ball'°" of wpXVy,, whereVy, is the velocity of the ball in stil

with a greater backspin but a lower initial velocity, sails fur- & @ndwy, is the angular velocity of the ball. With the axis of
ther than the struck fast ball. The much larger lift that theythe spin normal to the velocity,,=0.0368 m as the ball

assume also leads to a maximum fight distance from a lowegigdius,A=0.00425 i as the cross sectional area of the ball,
angle initial trajectory. and u=1.283 kg/ni as the air density, they calculate the

Their model can be tested by comparing the range thamnagnitude of the lift forcel, in a way that follows closely
they predict that balls will go with the ranges that are ob-(see Ref. 1, Fig. Athe results of Ref. 4 wher@using differ-
served. From the larger lift from backspin in their model, theent notatio,
ball goes much further than the distances | calculsee Fig. L~C AV 1
2.5 in Ref. 3, distances that are in accord with observations ~Cmslp@pA VD, @)
of the game. Indeed, from the “fast ball” line of their Table where the Coefﬁcientcmm 7.2x10°7 with L in Newtons.

II, they predict that under standard conditions a ball with angyt the wind tunnel measuremehextend only to velocities,
spin of 1827 rpm will travel 134.8 442 f) when hit from  hije the values oL so calculated were used for the much
a height of one meter with a launch angle of 0.46 radiang,igher velocities of batted ball§The drag crisis denotes the
(26.35°).(The curve ball, driven at a launch angle of 24.3° transition region between a lower velocity fluid dynamic re-
with a velocity of 96.3 mph and a backspin of 2644 rpm, gime with high drag resistance to flow and a higher velocity
goes 455 fi. regime where the resistance is smaller.

These are very long home runs. We know that only five of My own lift force values(Magnus forces in Ref.)2also
about 2000 home runs hit by the home team in 19 ball parksollow Ref. 4 and Eq(1) at low velocities, but are sharply
traveled that faf,and certainly most of these home runs werereduced from the values of E) at higher velocitie5of the
assisted by a following wind. drag crisis. Although this reduction follows from the

From these numbers and our observations, we concludequation$that reflect my view of the probable relation of the
that the model of Ref. 1 must be incorrect. Balls projectedviagnus force to the drag force, the reduced values also are
with the backspins and velocities that they calculate do notequired by the character of the observed flight of the ball.
go nearly that far in reality. From modern radar gun mea- (My model leads directly to a reduced Magnus force or lift
surements of the velocity of pitched balls, we know that theforce in the drag crisis region and to the reversal of the force
fastest pitchers throw regularly with initial velocities of on smooth balls observed by Brig§s reversal that limits
about 100 mph(Add 2 mph to the radar gun readings be- even Tiger Woods to 150 yd drives with smooth golf balls
cause the guns pick up the ball after it travels at least 15 ft savhich duck downward when hit with backspin by a driyer.

as to differentiate the ball from the throwing han8uch a The specific values of the drag coefficients that | adopted
ball thrown overhand will usually have a backspin near 1800n the drag crisis region were constrained by my assumption
rpm. that the coefficientsC4 and C,,, are functions only of the

We know that outfielders with good, but not extraordinary Reynolds number and that fly balls are known to travel ap-
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preciably further in Denver than at sea level. Because théSome results are hardly more than carefully considered
density of air is lower in Denver, a given Reynolds numberguesses: How much does backspin affect the distance a long
will correspond to a higher velocity there. Hence, we expecfly ball travels?” Hence, although | am certain that Sawicki,
that the drag crisis will be moved to higher velocities in Hubbard, and Strondare incorrect, | am not equally certain
Denver and for some formulations of the variation of thethat my own analyses are wholly right. The science of base-
drag and Magnuflift) forces with velocity in the drag crisis ball “ain’t rocket science.” It's much more difficult.
range, fly balls would be expected to travel less far in Denver
than at sea level, contrary to observations. Also, both the
drag and lift or magnus forces are expected to be propor_lG. S. Sawicki, M. Hubbard, and E. J. Stronge, “How to hit home runs:
tional to the air density and thus are reduced at high alti- OptiT“tha?i?ﬂ') bﬂ;;"i”ﬂg;;%rggtefs for maximum range trajectories,”
H H H H m. J. S. y - .

tudes. The reduc.tlon.ln _drag_ increases the distance that bal A da?/r, The Physics of BasebalHarperCollins, New York, 2001
travel, the reduction in lift will decrease the range. Hence, | 5.4 oq.
find that balls hit in Denver according to the model of Ref. 1 3 the first part of the 20th century, there were often throwing contests
and the drag and lift formulas do not travel farther than at seabetween games of Sunday double headers. The winners would sometimes
level. throw the ball a distance approaching 400 ft, although a 380 ft throw

Their conclusion that balls batted from pitches with over- VOVOU'(:] Sleeg??es_ Wj&ghﬂg prize-lgge F;‘Z?‘J)fzd\-(osetcgz gesnﬁe(iﬁgotl;z in

H H H H H mana In , IS ee p. , . u u
Eg@k Z%Yr? |;ng{:u2$)(l:le(sz§)r=r(; 726:2 ;:)(?(I;Isrgl\t/vﬁ: I’?"I];/ %Esgi(s)rmﬁ? throw at the Omaha altitude of 1040 ft was on a hot day with a foIIO\_Ning

. . . . . _breeze—the ranges were always set so that the players threw with the

las, but the detailed argument made in Ref. 1 in reaching this,ying—adding at least 30 ft to that for standard conditions.
conclusion is not valid. They wrote that, “Although signifi- “R. G. watts and R. Ferrer, “The lateral force on a spinning sphere: Aero-
cant ball deformations can occur during batting, this analysis dynamics of a curve ball,” Am. J. Phy&5, 40—44(1987).
assumes rigid-body impact.” Hence, their spin transfer cal- 5C. Frohlich, “Aerodynamic drag crisis and its possible effect on the flight
culation, the results of which are central to their conclusions, ©f @ baseball,” Am. J. Phy$2(4), 325-334(1984).

o @b .
cannot apply to baseball because baseballs are greatly degifeer':éaié 22'1:”342'2 in Ref. 2.

formed when struck by a bat under game conditions. 8. J. Briggs, “Effects of spin and speed on the lateral deflectuve) of
|.Can|f10t Cla_|m that my own rQSUHS are definitive—indeed a baseball and the Magnus effect for smooth spheres,” Am. J. Pfys.
while discussing uncertainties in my bodk, wrote (p. 3 589-596(1959.

Reply to Comment on “How to hit home runs: Optimum baseball swing
parameters for maximum range trajectories,” by Gregory S. Sawicki,
Mont Hubbard, and William J. Stronge [Am. J. Phys. 71 (11), 1152-1162 (2003)]

G. S. Sawicki
Department of Movement Science, University of Michigan, Ann Arbor, Michigan 48109

M. Hubbard
Department of Mechanical and Aeronautical Engineering, University of California, Davis, California 95616

W. J. Stronge
Department of Engineering, University of Cambridge, Cambridge CB21PZ, United Kingdom

(Received 27 April 2004; accepted 29 July 2D04
[DOI: 10.1119/1.1796831

[. INTRODUCTION paper’ “The spin decay time constant and the functional
dependencies of the drag and lift forces on the Reynolds

We appreciate Professor Adair’s contributions to the unfumber and spin parameter are among the least well under-
derstanding of baseball mechanics, and we commend higfood parts offour] model.” Nonetheless, we believe our
popularization of science through the example of baseballnodels taken together are more realistic than those of Adair
which illuminates various principles of physics. In addition, in toto.
we welcome his commehias an expression of a genuine To decide whether our model or Adair’s model of flight is
desire to increase our understanding of baseball mechaniozore valid, we could launch baseballs with known veloci-
His comment has prompted us to reconsider carefully théies, launch angles and spin rates, and compare the measured
implications of our model and its uncertainties. and predicted ranges. Such experiments should be done.

We have long been uneasy, however, about the analyticddowever, we find the argumentpresented by Adair regard-
models for various phenomena that have been proposed kg our model to be experimentally imprecise and based
Adair? These include his models for ball-bat interaction andmostly on anecdotes and calculations from his model, about
aerodynamic forces on a moving and spinning ball. Essenwhich we comment more in the following sections. We also
tially, he has created “recipes” for batting and lift and drag. disagree that “the science of basebfa#l] more difficult...

All models are approximations and, as we noted in ourthan rocket science? with the implication that it is espe-
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Table I. Optimum control variables and maximum range for typical pitcBgg,,=0.15, p=1.205 Kg/n¥, andu=1.8xX10"° N-s/n?.

Vo Vo Who 7 o { Eopt Popt Optimal
Pitch type (m/s) (m/s) (rad/9 (m/s) (rad/9 (rad) (m) (rad) range(m)
fast 42.00 30.00 —200.00 44.46 194.75 0.4921 0.0277 0.1944 135.108
knuckle 36.00 30.00 0.00 44.09 232.30 0.4712 0.0259 0.1723 135.922
curve 35.00 30.00 200.00 44.23 267.64 0.4385 0.0227 0.1475 139.047

cially difficult to understand. We believe it's only baseball— picture of how lift behaves at larger Re and lower S is in-
the impact and flight of a near sphere in a fairly limited rangedicative of the fact that the dependence of lift on S is not a
of Reynolds numbers and spin parameters. strong function of Re.

Our paper is based on published experimental data Even in the somewhat extremeompared to baseball
own and that of othejs These data includél) the pitched case of golf ball roughness, the careful and detailed study of
ball flight path angle at impact and its dependence on pitclyolf ball aerodynamics by Smits and Snifttcorroborates
speed;(2) the dependence of the ball-bat coefficient of res-the interpretation that the lift coefficient is not a function of
titution on impact speed(3) the bat speed achievable by Re for Re>90,000 and supports the assumption that the lift
good batters(4) the coefficients of friction between ball and coefficient is mainly a function of S for the range of Re in
bat; (5) the flight drag coefficient dependence on the Rey-which baseball is played.
nolds number Repvd/w; and (6) the flight lift coefficient Although we agree with Adair that it is primarily the dif-

dependence on the spin parameterrs/v. ferences between our and his calculations of the lift that lead
to the large differences in our predictions, we believe that our
. LIFT lift model is the best that is available. We find little or no

support in the fluid mechanics literature for Adair’s
Of the two aerodynamic forces, we are most confident osuggestioh(see Fig. 2.2 in Ref.)2hat the dependence of C
our understanding of the source of lift and the variables oron S should be attenuated or reduced to the extent shown by
which it depends. The fluid mechanics literaftfeand nu-  his model of lift at large velocities near the drag crisis. We
merous published studieg®on baseball lift forces all agree: urge the reader to scrutinize carefully Adair's equatim
the lift (or Robins—Magnuscoefficient is, within the speed 24) for how the lift (Robins—Magnusforce and the drag
range relevant to baseball (&<Re<2.5x10°), not (or at  force are related and to consider whether there is any basis
most weakly a function of Re, but instead depends mostfor this relation. We have not been able to find a derivation,
strongly on the spin parameter S. experimental validation, physical explanation, or another ref-
The spin parameters of optimally hit balls are typically erence anywhere in the literature to its use. Our view is that
small (S<0.25). Adair’s point that the bilinear lift coeffi- this equation is not valid.
cient approximationior fit) of C, versus SFig. 4 in Ref. 3
must be wrong because it fits the low Re, high S data of;; prag
Watts and Ferréris incorrect and irrelevant. All of the other
experimental data used to generate this approximation lie We believe it is clear from the experimental data in Refs.
very close to it; they are from experiments in the range 013, 8, and 10 that the baseball in high speed flight experi-
<S<0.47 and for larger Re more typical of the flight of ences the drag crisis; that is, the drag coefficieptu@der-
baseballs. Even the horizontal wind tunnel lift data ofgoes an abrupt decrease at Re below or neax 168 and a
Briggs! when suitably reinterpreted to account for the 0.1 Mgradual recovery for Rel1.7x 10°, although, as we noted in
cylindrical wind shield on the ceilingthe wind shield re- Ref. 3, the depth of the drag crisis appears to be different in
duces the time during which the ball is exposed to the liftspinning and nonspinning balls. In this sense the drag coef-
force), result in lift coefficients that cluster around the bilin- ficient is a function of Re and S, but the lift coefficient is a
ear fit in the practical ranges of<0S<0.3, and 1.XRe  function of only S to a good approximation. Nevertheless, all
<2.2x1C°. This latter range contains the drag crisis. Ouroptimally hit long fly balls have considerable spin. For this
papef obtains optimal values for the variables controllablereason we believe it is appropriate to assume a deeper drag
by the batter, undercut E and swing angleOur calculations  crisis for batted ball$ This approximation might break down
do not depend on the fact that the experiments in Ref. 7 werfor line drives with little or no spin, but these hits are seldom
done for Re too small and S too large to be strictly relevantong fly balls, the main subject of our paper.
to baseball or that our bilinear approximation fits their data. It is curious that Adair takes care to have his “recipe” for
That a fit of the data in Ref. 7 alone can give a reasonabléhe drag coefficient curve pass through the single data point

Table 1l. Optimum control variables and maximum range for typical pitcBes;;,=0.25, p=1.205 Kg/n¥, and x=1.8X 10" ® N-s/n?.

Vho Vo Who Vit oy 4 Eopt Popt Optimal
Pitch type (m/s) (m/s) (rad/9 (m/s) (rad/9 (rad) (m) (rad) range(m)
fast 42.00 30.00 —200.00 44.64 204.43 0.5380 0.0294 0.2363 124.362
knuckle 36.00 30.00 0.00 44.13 250.32 0.5153 0.0277 0.1972 124.929
curve 35.00 30.00 200.00 44.33 284.64 0.4880 0.0248 0.1807 127.517
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of Briggs Cp=0.31 at Re=2.09x 10°, while ignoring en-  spin-down is~28 s. If the equivalent roughness of the base-

tirely Refs. 8, 10, and 13, which report drag coefficients con-ball is substantially less than the golf baklthich is conceiv-

sistent with an abrupt and possibly deep drag crisis. ablg, then the spin-down moment coefficient could be half
We disagree with Adair that the main uncertainty in ourof that in golf and the spin-down time could be 50 s or more.

flight model is the lift coefficient. Rather we think that the Thus we believe our assumptibof neglecting spin-down

main uncertainty may be the depth of the drag crisis, that isentirely may not be far off, even though with a spin-down

the value of the minimum drag coefficient. In our papge  time of 50 s the ball loses 10% of its spim% s and this loss

took this minimum value to be &;,,=0.15. This value is may be significant enough to include in a dynamic model of

consistent with the results of Ref. 14 as discussed in Ref. 15light. It would be interesting to apply the technique of Ref.

But on further reflection, there is relatively little experimen- 18 to measure the baseball’s spin-down in flight.

tal data for baseballs in the range £.Be<1.75< 10° that

would allow a more confident estimate of,G,. Thus we

have done computational sensitivity studies, similar to thosd- IMPACT

in our paper, but with Gopin=0.25. _ Adair* claims the rigid body impact model used in Ref. 3
Tables I and Il compare optimal batting strategies for threqs jnyalid because it does not account for the finite deflec-
pitches that differ in speell,, and spinwpg, with the bat  tions that result from a bat striking a baseball—deflections
speedVg, constant, and show that the different optimal un-that increase the moment of inertia of the ball and decrease
dercutsE,, and swing angless,,; produce different batted the moment arm of frictional forces that act during the initial
ball speed¥/,;, spinswy; and launch angles and result in  part of the collision period. During impact, the effect of finite
different optimal ranges. The results in Tables | and Il can beleflections is to slightly increase the normal impulgeap
compared directly to the results in the same format in Tablevhich initial sliding is brought to a halt. Nevertheless, for all
Il of Ref. 3. (Note that the results here are for a slightly hard hit balls, the angle of incidendeneasured from the
different densityp and viscosityu than in Ref. 3; see Sec. norma) between bat and ball is well within the cone of
VIL.) friction,*® so initial sliding is brought to a halt substantially
The predicted range is very sensitive to increases in draefore contact ceases; there is sufficient time for friction to
in the drag crisis region. For example, an increase of 0.1 ifalt initial sliding despite the changes in geometry. Because
Comin gives a decrease in range of all optimally batted ballsof the large baseball stiffness, the ball has almost recovered
of about 10 m. The optimal undercut E and swing angle its spherical shape prior to separation from collision so that
increase by about 2 mm and 2°, respectively, and the resulfor impacts at a small angle of incidence, the changes in
ing launch angle increases by about 2.5°. The other essentiggngential and angular components of the ball velocity are

features of our results remain unchanged. not much affected by finite deflections.
To bring the initial shdm@ to a halt during the contact

period, our rigid body theoryshows that the coefficient of

IV. SPIN-DOWN friction u; must satisfy
We believe Adair’s estimafeof the spin-down time con- 2[54(0)| [1—SoV1+(03(0)/54(0))?]
stant ¢ 5 s to beunreasonably low, but this difference is not me= 713 (0)| (1+e,) '
a source of major disagreement because we assume that the 3 *
actual characteristic time is long enough that spin-down can rpw(0) (1)
effectively be ignored. So= =<
What is the correct spin-down model? In the fluid mechan- V01(0)+03(0)

ics literature, we are not aware of any relevant analytical o
numerical solutions of the spin-down problem for a spher
with translational velocity. The solution of Ref. 16 for spin- of mass of colliding bodiese, is the coefficient of restitu-

down with little or no translational velocity was used in Ref. i 4s. is th : ter at incid F I
17 as justification for neglecting spin-down entirely. These ion, andS, is the spin parameter at incidence. For our small-

resultd® predict a baseball spin-down characteristic time of€St measured coefficient of friction;=0.35, Eq.(1) indi-
about 250 s. It is difficult to determine if the spin-down rate c@tes that the initial slip will be halted during the collision
will increase or decrease when a large translational velocitjfrespective of the rate of initial spin arej if the angle of
is added. At zero or low translational Re, the shear stress igicidence is within 50° from the normal and 1<S;<1.
small but acts entirely around the ball. But at high Re, therelhese conditions are easily satisfied by almost all pitched
is separation and the high shear stresses act only in the uhalls that can be batted past the outfield.
separated part of the boundary layer, but in an asymmetric For the three optimal hits in Table I, the fractions of the
way (some shear stresses accelerate and some decgleratetotal compression impuldeequired to halt the slip, gp.,
Experimental spin-down rates for golf balls have been obare only 0.19, 0.13, and 0.04 for the fastball, knuckle ball,
tained in a wind tunnéf and in flight!® These results are and curve ball, respectively. Much less than half of the maxi-
consistent with measurements of a characteristic time fomum ball compression occurs before friction brings the ini-
golf ball spin-down of about 16 s. Reference 18 showedial sliding to a halt. If we assume a contact period of 1 ms
clearly that increased dimple dedihcreased roughnesm-  and an initial normal relative velocity of 70 m/s, we estimate
creases the spin-down moment coefficient %0%. Ex- the maximum ball compression to be 0.011 m. Thus the pe-
tending these results to baseball is not trivial, however. If weriod of slip will be slightly lengthened because ofal0%
assume the baseball roughness is the same as that of a gafluction in the moment arm for frictional forces about the
ball, then at 40 m/se@corresponding to Reynolds numbers center of mass, but this increased period is only a small part
of the golf experimenis the characteristic time for baseball of the contact period.

Whered,(0) andd4(0) are the incident tangential and nor-
€mal components of the relative velocity between the centers
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Adair® (p. 109 presents “recipes” for changes in the ve-  During our experimenfsat the Olympic Games in Atlanta
locity of the ball during impact with a stationary flat surface. in 1996 where we measured the trajectories of pitched balls
These recipes are not applicable to batting a baseball becauared used this data to infer the drag and lift forces, we ob-
they take no account of the inertia of the bat and they negleaerved, filmed, and digitized the 3D initial trajectory of a
the initial spin of the ball. It is therefore difficult to under- batted fastball hit for a home run. This home run had a
stand Adair’s statemehthat “[our’] conclusion that balls launch velocity of 50.8 m/$113.6 mph, s.d. 0.45 m/s and
batted from pitches with overspin have more backspin thamaunch angle of only 13.7 deg, s.d. 0.3 deg! It cleared the 10
balls hit off pitches with back spin... is in accord withis]  ft high left-center-field fence at Fulton County Stadium about
own recipes,” when the recipes do not consider the initial395 feet from home plate and traveled more than 400 ft. This
ball spin. Furthermore, for elastic impacts, Adair’'s recipesprecise experimental data point shows that balls hit not too
conserve energy whereas the equations in Ref. 3 exhibit much faster than those hypothesized by Adair and at a much
loss in kinetic energy. This loss of kinetic energy exactlylower launch angle can clear the fences, even near center
equals the work done by friction—work that transformsfield. Unfortunately, it was not possible to measure the spin
some translational kinetic energy into rotational kinetic en-of the ball, but it certainly must have been high because the
ergy or vice versa. resulting lift is the only force capable of delaying that ball’s

The neglect of the initial ball spin causes significant errorasendezvous with gravity. We doubt that Adair’s lift model is
in the launch angl@As an example, in the direct impact of a capable of supporting this home run with a reasonable
spinning baseball with a bat of normal incidence, a tangentishmount of spin.
impulse p is required to create the angular impulse
nP=1wy,=2mywyr,/5 necessary to stop the spin, wherg,m VII. CORRECTIONS
r, and | are the ball mass, radius and moment of inertia,

respectively. Whenw,=200 rad/s this tangential impulse In the extensive review of our calculations and paper

. . . \Prompted by Adair's commertwe have found a misprint
causes a tangential component of post-impact v elocity and two small errors, and have appreciated that we could
=pi/m,=2.93m/s. For a normal rebound velocity of 45 a6 chosen a better set of nominal parameters. Although it
m/s, this tangential velocity results in a deviation of the re-giq not affect our calculations, the radii of gyration for the
bound path from the normal direction of 3.73 deg and a 7.3y5) and bat are transposed in Table | of our papeather

_deg dlffe_renc_e in Fhe directions of the p_aths of balls spinningnan the intercept 0.09 as stated in Ref. 3, E29b), we

in opposite directions. Addimeglects this necessary conse- inadvertently used 0.10 in our calculations and a constant
quence of Newton’s second law. dynamic viscosity u=1.8x107° N-s/n?, rather than the

Our impact model is based only on Coulomb’s laws Ofvalue —1.845¢10-5 N-s/n?. which would be calculated
friction and on Newton’s laws of motion. In contrast Adair p= . O . 5
H_om the constant kinematic viscosity=1.5<10"> m?/s

obtains tangential changes in velocity based on the assum S 03 3
tion that the coefficient of restitution is the sole source ofénd densityp=1.23 Kg/n* we reported. We regret these

energy dissipation. We argue that slip during impact withdiscrepancies, although they change our results very little.
friction is a secondary source of energy dissipation during Also we chos&a nominal density=1.23 Kg/n? which

collision, a source neglected in Adair's model of batting. ~ corresponds better to a chilly day at Fenway in April than to
temperatures at which the game is more typically played

(68°F). In our results here we use the more realistic values
VI. ANECDOTES p=1.205 Kg/n? andx=1.8x 10 °, the latter of which, un-
like the kinematic viscosity, is a function of the tempera-
Although Adair’s anecdotes about the limited range ofture only. This assumption makes R&pvr,/u depend only

thrown balls may seem compelling, it is well known that on velocity v and density at higher altitudes but at the same
achievable human throwing velocities strongly depend onemperature.

launch anglé® so that the launch velocities in the Omaha

contests might well have been significantly less than those qf,

the fastest pitcher@nd optimally batted ballsf the thrown Vil CONCLUSIONS

launch angles were large. His insistence that the optimal We believe that Adatrmay be too narrowly interpreting

launch angle is near 35° makes us wonder whether he urthe main message of our papéie view its contributions to

derstands that our definition of optimal includes the requirebe the integration of the experimentally based impact and

ment of the ball having been batted. The optimal batted conflight models such that it is possible to see how they fit

ditions must trade off velocity, angle, and spin. Ourtogether, and our recognition that there is an optimal batting

calculations show explicitly how to do so. strategy that is dependent on the bat-ball interaction and the
We question whether Adair’s statistfcsn the small per- flight of the ball. We reaffirm our conclusion that an opti-

centage of long home runs are stihr ever werg valid.  mally batted curve ball can travel farther than an optimally

According to Ref. 21, Mark McGuire’s 70 home runs in hit fast ball. It is apparently robust and remains so even if our

1998 included 20 that traveled more than 450 ft, four timessalue of G, proves to be too small by as much as a factor

more by a single person than IBM measured for the homef two.

teams(in less than all of the ballpark®f the league. In the

only game one of us attended at Pac Bell Pé&kig. 9, ACKNOWLEDGMENTS
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Figure 5 of this manuscript was printed incorrectly. The correct figure is shown below.

Fig. 5. Interferograms of a 17 cm circular plate vibrating in one of its normal modes. Theoretically the two modes occur at the same frequencyheowever,
degeneracy is broken by a slight asymmetry in the plate. The frequencies of vibration are 2133 and 2145 Hz.
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