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In 1927 Einstein1 presented a precursor of the much bet
known argument of Einstein–Podolsky–Rosen~EPR!2 that
the quantum mechanical description of physical reality
either incomplete or violates locality by tacitly assuming s
perluminal causality in the measurement process. He
posed a thought experiment in which the support of the w
function of a ball is contained within two boxes, B1 and B2 ,
that are carried arbitrarily far from each other. When a m
surement is performed to detect whether the ball is in B1 , not
only is a positive or negative answer found regarding t
box, but simultaneously a negative or positive answer is
tained regarding box B2 . He concluded that either the wav
function is an incomplete description of the ball, requiri
supplementation by additional information concerning its
cation, or else an experimental intervention in B1 immedi-
ately causes a determination of its presence or absenc
B2 , which would constitute non-local causation.

Norsen3 has deplored the neglect of Einstein’s ‘‘box’’ a
gument, claiming not only that it is valid, but is superior
EPR because of its simplicity: it involves only a single sy
tem, considers only the position of that system rather tha
pair of non-commuting properties, and above all avoids
need to invoke counterfactual reasoning.~EPR not only in-
fers the position of particle I from the position of particle I
or vice versa if position is measured on one of the partic
but they infer the momentum of one particle from the m
mentum of the other if momentum is measured on either!

However, there is a serious flaw in Norsen’s defense of
box argument in my opinion. IfQ1 is the projection operato
representing the physical proposition that the ball is in1
andQ2 is the projection operator corresponding to the ba
location in B2 , then the logical structure of the lattice o
projections in the quantum mechanics of localizable syste
ensures thatQ1 andQ2 are orthogonal, that is,

Q1Q25Q2Q150, ~1!

independently of the quantum state of the ball. Hence
state that is an eigenstate ofQ1 with eigenvalue 1 or 0 will
also be an eigenstate ofQ2 with respective eigenvalue 0 or 1
~The relation ofQ1 andQ2 to B1 and B2 , which is accepted
intuitively by physicists, is generalized and presented w
mathematical rigor in Mackey’s discussion4 of projection-
valued measures on Borel spaces.! Because Eq.~1! is inde-
pendent of the quantum state of the ball, the inference fro
measurement yielding the location or non-location of the b
in B1 to the respective non-location or location in B2 does
not rely on any contingencies, and therefore it is fair to s
that it is a matter of logic rather than of causality. Hence
one rejects Einstein’s contention that quantum mecha
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gives an incomplete description of the ball, in the sense
its location is definitely in B1 or B2 even when the wave
function does not vanish identically in either box, one is n
forced to accept non-local causality as the only alternat
The logical determination of the truth value assigned toQ2

when the truth value ofQ1 is determined by measureme
~or conversely! does not constitute an act of causality.

This statement is made with a minimum commitment
any explanation of the relation between the quantum the
of measurement and relativistic space–time structure. O
possible explanation is the proposal by Fleming and Benn5

that the objective quantum state has a different representa
as a wave function in each reference frame. The only cla
made here, contrary to that of Norsen,3 is the non-causa
character of the mutual determination of the truth values
Q1 andQ2 .

A corollary of my claim is that the EPR argument for th
incompatibility of locality with the completeness of a qua
tum mechanical description of physical reality is definitive
stronger than the box argument. The quantum state stu
by EPR is an entangled two-particle state, which is a con
gency. If the two-particle state were a product state, then
strict correlation of the positions of particles 1 and 2 and
strict correlation of the momenta 1 and 2 could not be
rived, and therefore the strict relation of the projections o
regions of position space and the strict relation of the proj
tions onto regions of momentum space are not matters
logic. Therefore EPR is justified in concluding that the on
way to save local causality is to postulate the incompleten
of the quantum mechanical description, and, as we n
know, this conclusion opens the path to Bell’s theorem and
the experiments that strongly point to non-locality in t
physical world.

A final remark concerns Norsen’s argument that the E
argument is inferior to the box argument because of its r
ance on counterfactual reasoning. Although many scho
accept that characterization of EPR’s argumentation, it
been plausibly maintained by d’Espagnat6 and Shimony7 that
EPR’s reasoning for the strict correlation of the positions a
the momenta of the two particles can be carried out by o
nary inductive logic, using four subensembles of the en
ensemble of particle pairs, with no reliance on counterfact
conditionals.

In spite of the foregoing criticisms, Norsen3 deserves rec-
ognition for his examination of the box argument, which h
subtleties worthy of further study, particularly concerning t
temporal relation of logically equivalent events in regio
with spacelike separation.
177jp © 2005 American Association of Physics Teachers
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I give an extended analysis of the very simple ga
paradoxical behavior whereby two losing games ra
game, modeled on a random walk, requires only tw
process. ©2005 American Association of Physics Teachers
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I. INTRODUCTION

In 1986–7 my colleagues and I posed the followi
‘‘paradox.’’1,2 Consider a random walk on a cycle of bas
governed by one of two sets of transition constants for s
ping between the bases. Using either set alone, the wa
biased to favor completion of a counterclockwise cyc
However, either periodic1 or random2 alternation between the
two sets causes net clockwise cycling!

To illustrate as simply as possible this paradoxical beh
ior, I published3 a very simple game played with a check
stepping on part of a checkerboard. The stepping is dec
by the roll of a pair of dice. Alternation between two sets
rules for the stepping is achieved by flipping a coin. In
recent paper4 Martin and von Baeyer discussed these ‘‘A
tumian games’’ and asserted that my analysis was flaw
and that the game does not display the paradoxical beha
that I claimed. They further claimed that ‘‘the inherent sym
metry of Astumian’s game prevents it from achieving its p
pose.’’ Here, I give an extended description of my game a
show that the analysis of Martin and von Baeyer only tre
a special case of my model that is different than the case
which I focused, and that, in general, my game does sh
the paradoxical behavior first demonstrated in Refs. 1 an

The game is illustrated in Fig. 1. A checker is placed
the middle square of a sequence of five squares. The obje
to reach the square marked ‘‘win’’ before reaching the squ
marked ‘‘lose’’ by rolling the dice and displacing the check
according to one of two possible sets of rules. Apparen
Martin and von Baeyer4 misread the rules of my game an
took a move to mean only a physical displacement of
checker rather than a turn consisting of rolling the dice a
following the instructions on the relevant rule table. In th
picture, the checker is displaced either to the left or right
each move and the sum of the transition probabilities to
left and to the right from any square is constrained to be o
In my game, however, which is inspired by a Monte Ca
simulation of a random walk, there are three possibilities
the checker on each move: step left, step right, or stay
When we play a single game, both interpretations lead to
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same ratio of wins to losses. For game 1 we calculate~832!/
~435!516/20, which is equal to the ratio calculated in Ref
equal to„~2/7!3~2/3!!/~~5/7!3~1/3!…54/5. The identical ratio
of wins to losses holds for game 2, so clearly each gam
one that on average the player loses.

The situation is dramatically different when we combi
games 1 and 2 by flipping a coin after each roll of the dice
select the rule set by which the next decision is made. T
correct way of calculating the result of combining the tw
games by a coin flip is to average the frequencies for s
ping left and right. The coin flip randomizes the chance
playing by rule set 1 or by rule set 2 on each roll of the dic
Starting at the middle there is a 50/50 chance of playing
rule set 1, for which the frequency of displacement to t
right is 2/36, and a 50/50 chance of playing by rule set 2
which the frequency of displacement to the right is 8/3
Thus the net chance of being displaced to the right on
next roll is 10/72. Exactly the same 10/72 holds for the f
quency of displacement to the right from a white square. T
average frequency for displacement to the left from eit
white or black is 9/72. When we play the combined game
win more often than we lose@~10310!/~939!, i.e., 55% wins
expected#, even though when playing either game alone
lose more often than we win@~832!/~534!, i.e., 45% wins
expected#.

II. KINETIC BARRIER REPRESENTATION

In Fig. 2 the game is translated into a ‘‘kinetic barrie
diagram5 commonly used to describe biochemical process
In this picture, the mechanism by which the paradoxical
sults of Ref. 2 arise becomes clearer. If we play either ga
alone, the net tilt from right to left leads inexorably to mo
losses than wins. However, things are very different if we fl
a coin before each roll of the dice to determine whether
next decision will be made according to rule set 1 or rule
2, effectively averaging the frequencies. In the combin
game, the frequency for a transition to the left from eithe
black or white square is 5/36 and for a transition to the rig
178jp © 2005 American Association of Physics Teachers
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from either color square is 4.5/36. Thus the kinetic barr
diagram for the combined game now tilts to the right, lead
inexorably to more wins than losses.

III. THE GAME AS A RANDOM WALK

In Fig. 1~b!, the game is illustrated as a random walk on
one-dimensional lattice with two states, ‘‘Black’’~B! and
‘‘White’’ ~W!. The probabilities for a transition to the left ar
denoted byqB andqW , and the probabilities for a transitio
to the right are denoted bypB and pW . The r B(W)51
2pB(W)2qB(W) denote the probability that no transition o
curs on a given move, and so are a measure of the lifetim
a particular square. In the literature a move in which
transition occurs is often termed a ‘‘self-transition.’’

Fig. 1. ~a! The simplest Astumian Game is played with a checker on fi
squares of a checker board. The stepping of the checker toward a ‘‘win
‘‘loss’’ is governed by the roll of a pair of dice according to one of the tw
rule tables labeled 1~H! and 2~T!. For each roll there are three possibilities—
step left~L!, step right~R!, or step in place~N!. The rolls that trigger each
response depend on whether the checker is on a black~B! or white ~W!
square. Thus, when on the center black square playing game one, if an
rolled ~2 ways out of 36 possible rolls!, the checker is moved to the whit
square on the right; if a 2, 4, or 12 is rolled~5 rolls out of 36!, the checker
is moved to the white square on the left; and on any other roll, the che
remains on the central black square and the dice are rolled again. Whe
checker is on either white squares, the checker is moved one square
right on a roll of 7 or 11~there are 8 ways out of the 36 total possible roll!,
and on a roll of 2, 3, or 12~4 rolls out of 36! the checker is moved to the
left. In the randomly combined game a coin is flipped before each roll. If
coin lands on heads, the following roll is played according to Table 1~H!,
and if it lands tails, the following roll is played according to Table 2~T!. ~b!
A random walk diagram for the game. The dashed circular arrows indi
the ‘‘self transitions’’ with probabilitiesr B on a black square andr W on a
white square.~c! A probability tree for the random walk. Martin and vo
Baeyer ~Ref. 4! analyzed only the special case thatr B5r W50 for both
games.
179 Am. J. Phys., Vol. 73, No. 2, February 2005
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Figure 1~c! shows a ‘‘probability tree’’ for the Astumian
game. The ratio of wins to losses for either game
pB,i pW,i /(qB,iqW,i), with i 51, 2 denoting game 1 or 2. Th
random combination of the two games by flipping a co
results in averaging thep’s andq’s so in the combined game
the ratio of wins to losses is (pW,11pW,2)(pB,1

1pB,2)/@(qW,11qW,2)(qB,11qB,2)#. For the paradox, we
need

pW,1pB,1,qW,1qB,1 , ~1a!

pW,2pB,2,qW,2qB,2 , ~1b!

~pW,11pW,2!~pB,11pB,2!.~qW,11qW,2!~qB,11qB,2!,
~1c!

which is very easily met, for example, with the values giv
in the tables in Fig. 1~a!. Taking the case, however, tha
self-transition probabilities from black and white in ea
game are the same,r B,15r W,15r 1 and r B,25r W,25r 2 (r 1

5r 250, the case treated by Martin and von Baeyer, is
special case of this! and writing theq’s in terms of ther’s,
Eqs.~2a!, ~2b!, and~2c! lead to~3a!, ~3b!, and~3c!, respec-
tively,

~pW,11pB,1!,~12r 1!, ~2a!

~pW,21pB,2!,~12r 2!, ~2b!
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the

e

te

Fig. 2. Kinetic barrier diagram representation of the game. The barriers
proportional to the log of the inverse frequencies, and the difference
levels between adjacent B and W squares depend on the log of the ra
frequencies as shown. We arbitrarily set the level of the starting squar
zero. The net tendency is to move from high to low, so it is apparent fr
the net tilt to the left that both game 1 and game 2 on average are lo
propositions. When we combine the games by flipping the coin, the frequ
cies are averaged, resulting in the kinetic barrier diagram for the comb
game, which tilts to the right and is clearly, on average, a winning prop
tion.
179Notes and Discussions
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~pW,11pW,21pB,11pB,2!.~22r 12r 2!, ~2c!

which is a contradiction. Thus, the paradoxical reversal
two losing games to a winning game by a random combi
tion is impossible for games where the self-transition pr
abilities from black and white are the same in each gam

IV. TWO PARAMETER MODEL FOR THE
PARADOXICAL BEHAVIOR

As a very simple case we can demonstrate the ‘‘parad
with only two parameters. LetqB,15qW,15qB,25qW,25q,
pB,15pW,25p and pW,15pB,2512p, which leads tor B,2

5r W,1512(p1q) and r B,25r W,15p2q. We requirep1q
,1 and (12p)1q,1. In either individual game, the rati
of wins to losses isp(12p)/q2 while in the combined game
the ratio of wins to losses is 0.5/q2. In Fig. 3~a! a compact
cycle representation, used in early studies of the paradox6 is
given. The completion of a clockwise cycle corresponds t
win, and the completion of a counterclockwise cycle cor
sponds to a loss. The region of parameter space$q,p% in
which the paradox occurs is graphically illustrated in F
3~b!, where we plot the curvesq5p, q512p @this defines

Fig. 3. ~a! Compact cycle diagrams for the Astumian game with the v
simple two-parameter case discussed in Sec. IV.~b! A graphical illustration
of the region in$p,q% parameter space in which the paradoxical behav
occurs. The total transition probability out of either state must be less tha
that is,p1q,1 and (12p)1q,1 so that only the region above the lin
p5q and below the linep512q is consistent with the transition probabili
ties for this model. The two games are individually losing only whenq2

.p(12p), and because the combined game is winning for allq,0.5, the
shaded areas define the region where the paradoxical reversal from los
winning by a random combination occurs.
180 Am. J. Phys., Vol. 73, No. 2, February 2005
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the region in whichp1q,1 and (12p)1q,1] and q2

5p(12p), which defines the region in which the two gam
are individually biased to favor counter-clockwise cyclin
The paradox occurs in the shaded region because for aq
,0.5 the combined game is biased to favor clockwise
cling.

V. GENERALIZED ASTUMIAN GAMES

Imagine that instead of moving on only five squares,
checkerboard rank extends indefinitely from the start
point in both directions, and we take a model with gene
forward (pB,i and pW,i) and backward (qB,i and qW,i) fre-
quencies between zero and one, wherei 51, 2, orc, with c
denoting the combined games. This is a ‘‘modulo-2’’ gam
because there are only two color squares: black and wh

We allow the possibility of flipping two different, possibl
biased, coins to determine which of the two games is pla
on the next roll; one coin if the checker is on the bla
square, with probability to land headshb , and the other if the
checker is on the white square, with the probability to la
headshw . For any of the games~including the combined
game! the average gain,Gi , for then11st roll is

Gi~n11!5~pB,i2qB,i !PB~n!1~pW,i2qW,i !„12PB~n!….
~3!

PB(n), the probability that the checker is on a black squa
after thenth roll, can be calculated from the recursion rel
tion

PB~n!5~12pB,i2qB,i !PB~n21!

1~pW,i1qW,i !„12PB~n21!…, ~4!

which is the fraction on black that stays on black plus t
fraction on white that moves to black in a given roll. Th
probability that the checker is on a white square is obviou
PW(n)512PB(n) so the game involves only a single var
able. This game is a first-order Markov chain becausePB(n)
depends only on the probability one step before,PB(n
21).

The stable solution to Eq.~4! occurs whenPB(n)5PB(n
21). Hence, we find

PB
ss5

pW,i1qW,i

pW,i1qW,i1pB,i1qB,i
. ~5!

We substitute Eq.~5! into Eq. ~1! and find the average dis
placement once the stable solution has been reached:

Gi5
pW,i pB,i2qW,iqB,i

pW,i1qW,i1pB,i1qB,i
. ~6!

Clearly, the average gain is zero~a condition known as de
tailed balance! if and only if the product of the forward fre
quencies is equal to the product of the backward frequenc

For the combined game the frequencies are the weigh
averages of the frequencies for games 1 and 2,

pW,c5hwpW,11~12hw!pW,2 , ~7a!

qW,c5hwqW,11~12hw!qW,2 , ~7b!

r
1,

to
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pB,c5hbpB,11~12hb!pB,2 , ~7c!

qB,c5hbqB,11~12hb!qB,2 . ~7d!

As pointed out in Ref. 2, the combined game need not
play detailed balance even if the individual games do. C
sider the case with frequenciespB,1525/36, pW,151/36,
qB,155/36, qW,155/36, andpB,251/36, pW,2525/36, qB,2

55/36, andqW,255/36. Clearly both games 1 and 2 ind
vidually obey a detailed balance~the product of the forward
frequencies equals the product of the reverse frequenc!,
but the combined game withhw5hb50.5 (pB,c513/36,
pW,c513/36,qB,c55/36, andqW,c55/36) does not.

We could derive a condition for the detailed balance
the combined game directly by requiring thatpW,cpB,c

2qW,cqB,c50 and substituting the transition probabilitie
from Eq. ~5!. A more elegant approach is to directly impo
microscopic reversibility. Thus, starting on black in gam
one, the probability to switch to game 2, move right, swit
to game 1, and move left must equal the probability to mo
right, switch to game 2, move left, and switch to game 1,
microscopic reverse. That is,

~12hb!pB,2hwpW,12qB,1~12hw!qW,2hb50. ~8!

Equation~8! is the same condition as that derived for d
tailed balance using a diagram method for an enzyme kin
model.6 The left-hand side is proportional to the average d
placement, so it is obvious both formally as well
intuitively7 that the deterministic strategy of always playin
game 1 when on black (hb51) and game 2 when on whit
(hw50) maximizes the win rate, and is better than any r
dom strategy withhb5hw .

VI. RELATIONSHIP TO SIMPSON’S PARADOX

The condition for the paradoxical conversion of two losi
games into a winning game by statistically combining th
is G1 , G2,0 andGc.0. This reversal is reminiscent of th
well-known Simpson’s paradox,8 which refers to the reversa
of the direction of a comparison or an association when d
from several groups are combined to form a single group9

A classic example10 involves a drug test in which 30 male
take a drug, and 18 recover~60%!, but in a control group of
10 males with the same illness whom do not take the dru
recover anyway~70%!. Out of 10 females who take the dru
only 2 recover~20%!, while in a control group 9 out of 30
who do not take the drug recover~30%!. Thus, it is clear that
there is no statistical evidence that the drug helps ei
males or females. However, when we combine the data,
come up with a total of 40 people who took the drug, out
which 20 recover~50%!, whereas in the aggregate contr
group of 40 people with the illness who did not take t
drug, only 16 recovered~40%!. From this perspective it ap
pears that the drug is helpful.

The paradoxical result—that the drug is deleterious wh
considered from the perspective of males or females in
vidually, but helpful when considered from the perspect
of the overall population—arises from a hidden correlatio
Males, who are in general more likely to recover than
females, make up most of the experimental cohort, but
males make up most of the control cohort. There is no pa
181 Am. J. Phys., Vol. 73, No. 2, February 2005
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dox when this difference is recognized—the drug should
be administered to males or to females. Note that there co
be other ‘‘lurking’’ variables, such as age, which might r
verse this conclusion. This example should serve as a w
ing on how easy it is to fool ourselves with statistics unle
we understand all potential correlations between the data

The reversal of losing games to form a winning gam
when combined arises from a similar ‘‘hidden’’ correlatio
In the simplest Astumian game in Fig. 1, the checker tend
reside on the black square for more rolls than on the wh
square in game 1H, but on the white square for more r
than on the black square in game 2T. Thus, it is more lik
for a checker on a white square to switch to game 2, whe
right transition is more likely than a left one, and for
checker on a black square to switch to game 1, where o
again a transition to the right is more likely than one to t
left. The combination gives rise to a net tendency to mo
right, even though in either game alone the tendency is
move left.

When we strip away the veneer of dice or coin games o
datasets, and we simply consider the counterintuitive beh
ior in terms of numbers, we see that the condition for Si
pson’s paradox to occur is to find numbers such thata/A
,b/B and c/C,d/D, but (a1c)/(A1C).(b1d)/(B
1D). For the drug example,a is the number of males who
took the drug and recovered andA is the total number of
males who took the drug, etc. The requirement for the A
tumian game to demonstrate the paradoxical result
pW,1pB,1 /(qW,1qB,1),1 and pW,2pB,2 /(qW,2qB,2),1, but
pW,cpB,c /(qW,cqB,c).1. Obviously this requirement can b
converted into the identical form for Simpson’s parado
Thus we conclude that the result that two losing games
combine to form a winning game is, in fact, a variation
Simpson’s paradox.

VII. MINIMAL MODEL FOR A BROWNIAN MOTOR

The Astumian games clearly demonstrates that a fi
order Markov chain, a two-state~modulo-2! system, is suffi-
cient to demonstrate the paradoxical behavior that two los
games can be combined to form a winning game. This ga
is the discrete-time analog of the continuous time two-st
chemical kinetic mechanism,6 which is the minimal model
for a Brownian motor.11 Nonetheless, in addition to Ref. 4
other authors have incorrectly claimed that the minim
model for demonstrating the paradoxical reversal of the
rection of a flow requires a second-order~three-state or
modulo 3! system.7,12,13Why have so many authors arrive
at the same erroneous conclusion? By reviewing these pa
we find that in all an unjustified constraint is placed on t
transition coefficients, namely that the sum of the transit
constants out of a state is required to equal one. In o
words, the system is not allowed to remain in the same s
in any iteration. But in general, a particle undergoing a o
dimensional motion on a lattice can move forward, bac
ward, or stay in the same place; a stock price tomorrow
be greater than, less than, or equal to the price today; an
a game of chess, a player can win, lose, or draw. From wh
did the idea come that there are only two possibilities?

Perhaps the answer lies in the recent work of Juan P
rondo who introduced games based on tossing one of sev
biased coins, in which also two losing games combine
form a winning game~or vice versa!.14 Because the game
181Notes and Discussions
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are played with a coin, each flip of the coin results in
binary decision: win–lose, or left–right. To achieve the
quired asymmetry, one of the games Parrondo described
volved a rather complicated rule where the coin to be flipp
is determined by the amount of money the player has on
turn. However, Parrondo’s ‘‘coin flip’’ games can be mapp
onto a Markov cycle12,13 identical to the cycles used in th
original formulation of the paradox,2 except that the sum o
the two transition rates out of each state must equal one.
authors12,13 have pointed out that these resulting cycle mo
els are time symmetric with fewer than three states,
based on this made the claim that a three-state mode~or
equivalently a modulo three system! is the minimal model
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capable of demonstrating the paradoxical result by wh
two losing games randomly combine to form a winnin
game. However, for the Astumian games, with unequal li
times in two states, the combination itself breaks time sy
metry, and so a two-state model is sufficient.

VIII. BREAKING TIME SYMMETRY

Any two-state Astumian game is clearly time symmetric
there is no way to distinguish a sequence, sayB→W→B,
from its reverse. When we combine the games, however,
must specify both the state of the checker~B or W! and the
state of the coin~H or T!. Let us compare a sequence:
~B,H ! ——→
12hB

~B,T! ——→
pB,21qB,2

~W,T! ——→
hW

~W,H ! ——→
pW,11qW,1

~B,H !,

with the reverse of the sequence,

~B,H ! ——→
~pB,11qB,1!

~W,H ! ——→
12hW

~W,T! ——→
~pW,21qW,2!

~B,T! ——→
hB

~B,H !.
ho-

-
o

s
ob-
y a
d
bility

-
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-
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The ratio of the probabilities for these two sequences

~12hb!~hw!~pB,21qB,2!~pW,11qW,1!

~12hw!~hb!~pB,11qB,1!~pW,21qW,2!
. ~9!

If the escape frequencies are different for some states
for others, this ratio need not be unity even for a rand
combination (hw5hb) of the games, and the combined gam
can thus be time asymmetric. The original continuous tim6

and discrete time3 Astumian games are composed of tw
individual games, each of which is losing and time symm
ric, and yet which randomly combine to form a winnin
game with broken time symmetry.

When we insist that the lifetimes in the states are the sa
@that is, (pW,11qW,1)5(pB,11qB,1) and (pW,21qW,2)
5(pB,21qB,2)], we lose the time asymmetry in the com
bined two-state game; clearly in this case, forhb5hw the
ratio of the probabilities for forward and reverse sequence
unity. As we have seen in Sec. III, with this constraint t
paradoxical reversal by a random combination of
‘‘games’’ is impossible. Time asymmetry can be restored
adding another state which builds asymmetry into one of
individual games, but this addition certainly does not lead
a minimal model as claimed in Ref. 12.

IX. FROM CHEMICAL KINETICS TO GAMES

The game was inspired by the earlier work on rand
walks on biochemical cycles,2,6 which are represented b
chemical kinetic models such as shown below.

¯W

bB,i

aW,i

B

bW,i

aB,i

W

bB,i

aW,i

B¯ .

The time evolution of the system is given by

dPB

dt
5~aW,i1bW,i !~12PB!2~aB,i1bB,i !~PB!, ~10!

where we have used conservationPB1PW51. The system
above describes a two-state cycle that could equally wel
an

t-

e

is

e
y
e
o

e

written in the compact cycle form shown in Fig. 3~a!. The
subscripti denotes the chemical state, for example, phosp
rylated (i 51) or dephosphorylated (i 52). The chemical en-
ergy supply~for example, the hydrolysis of Adenosine Triph
osphate, ATP! powers the random flipping between the tw
chemical forms.

Here, thea’s andb’s are rate constants, with dimension
of inverse time, rather than dimensionless transition pr
abilities. Such biochemical cycles are often simulated b
Monte Carlo approach2 in which each transition is modele
as a Poisson process. For the two-state model, the proba
P(B,t1DtuW,t) that a system in stateW at timet has made
at least one transition to a surrounding stateB by time
t1Dt is

P~B,t1DtuW,t !5E
t

t1Dt

~aW1bW!e2~aW1bW!t dt

512e2~aW1bW!Dt. ~11!

For sufficiently smallDt there will be at most one transi
tion during the interval so the transition probabilities to t
left and right are simply this total probability multiplied b
the branching probabilities,

pW,i5
aW,i

aW,i1bW,i
~12e2~aW1bW!Dt!, ~12a!

qW,i5
bW,i

aW,i1bW,i
~12e2~aW1bW!Dt!, ~12b!

r W,i512pW,i2qW,i , ~12c!

with similar results, derived in the same way, forpB,i , qB,i ,
and r B,i . The evolution of the system is then simulated
iterating Eq.~4! with these values for the transition prob
abilities over many time steps. This procedure effectiv
converts the ordinary differential equation~10! to the com-
putationally amenable iterative form of Eq.~4!. For this pro-
cedure to reliably reproduce the solution of Eq.~10!, it is
182Notes and Discussions
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essential thatDt be very small, and hence that ther’s are all
close to 1.

X. CONCLUSIONS

The Astumian games were first conceived to illustrate
mechanism by which energy from a scalar~directionless!
chemical reaction can be used to power vectorial transpo
a Brownian motor that moves preferentially in one directi
along a polymeric lattice. The dice play the role of therm
noise, allowing the occasional transition from one square
the next. The net tendency to lose reflects the effect of
ternal forces that tend to cause the motor to lose energy.
coin toss mimics the input of energy from the nonequil
rium chemical reaction that powers the motor. The reve
from ‘‘losing’’ to ‘‘winning’’ addresses what I have always
considered one of the deepest paradoxes associated with
lecular motors and pumps. In any chemical state, the m
tends to move in the direction driven by any externally a
plied force. If the motor, powered by a nonequilibrium rea
tion, cycles through different chemical states, however,
direction can be reversed, and the motor can move ener
cally ‘‘uphill.’’ The Astumian games show how randoml
interleaving stochastic events of game 1~one chemical state
of the motor! with those of game 2~a different chemical state
of the motor! can reverse the predicted outcome of playi
game 1 or game 2 alone. It is important to note that t
reversal is a purely statistical result—there need be no di
mechanical interaction between the coin and the checker~or,
more subtly, between a biomolecular motor and the chem
reaction, for example, ATP hydrolysis, that provides the
ergy for switching! other than that required to change t
rules. A thermodynamic analysis of the simple two-st
Brownian motor shows that the efficiency of energy conv
sion for biologically realistic values of the parameters can
greater than 75%.6

The paradoxical effect uncovered by Astumianet al.2 has
implications far beyond human games of chance. Every b
logical catalyst~enzyme! in our body is continually playing a
game of chance, whereby the random bindings of differ
molecules to the enzyme, governed by thermal ‘‘Brownia
noise in the environment, determine whether the molec
~and hence the cell! wins ~for example, increases the cell
energy capital! or loses~decreases the cells’ energy capita!
in that round. The ultimate fate of the cell, bankruptcy me
ing death, is determined by playing in the limit of ove
whelmingly large numbers, with many random games as
ciated with every enzyme. Any help the cell can find, f
example, by the paradoxical results described here, can m
the cell toward survival and to evolutionary victory.
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In their baseball analysis of batting against fast balls a
curve balls, Sawicki, Hubbard, and Stronge1 concluded that
given a definite bat swing velocity, an optimally hit curv
ball will travel further than an optimally hit fast ball, al
though the fast ball will have a significantly higher veloci
at the point of the bat-ball impact. Moreover, they find th
the optimum launch angle for hitting long balls, that is, hom
runs, is near 25°. As they note, their conclusions are in sh
disagreement with the results of my analysis,2 which con-
cluded that a struck fast ball will go further and that t
optimum launch angle is'35°.

In Ref. 1 it is assumed that the backspin of the ball p
jected from the bat must be greater when the overspinn
curve ball is struck than when the backspinning fast bal
hit by the same bat swing. Moreover, they conclude that
backspin generates sufficient lift so that the struck curve b
with a greater backspin but a lower initial velocity, sails fu
ther than the struck fast ball. The much larger lift that th
assume also leads to a maximum fight distance from a lo
angle initial trajectory.

Their model can be tested by comparing the range
they predict that balls will go with the ranges that are o
served. From the larger lift from backspin in their model, t
ball goes much further than the distances I calculate~see Fig.
2.5 in Ref. 2!, distances that are in accord with observatio
of the game. Indeed, from the ‘‘fast ball’’ line of their Tab
II, they predict that under standard conditions a ball with
initial velocity of 44.3 m/s~99.1 mph! with an initial back-
spin of 1827 rpm will travel 134.8 m~442 ft! when hit from
a height of one meter with a launch angle of 0.46 radia
(26.35°). ~The curve ball, driven at a launch angle of 24.
with a velocity of 96.3 mph and a backspin of 2644 rp
goes 455 ft.!

These are very long home runs. We know that only five
about 2000 home runs hit by the home team in 19 ball pa
traveled that far,2 and certainly most of these home runs we
assisted by a following wind.

From these numbers and our observations, we conc
that the model of Ref. 1 must be incorrect. Balls projec
with the backspins and velocities that they calculate do
go nearly that far in reality. From modern radar gun me
surements of the velocity of pitched balls, we know that
fastest pitchers throw regularly with initial velocities o
about 100 mph.~Add 2 mph to the radar gun readings b
cause the guns pick up the ball after it travels at least 15 f
as to differentiate the ball from the throwing hand.! Such a
ball thrown overhand will usually have a backspin near 18
rpm.

We know that outfielders with good, but not extraordina
184 Am. J. Phys.73 ~2!, February 2005 http://aapt.org/a
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arms, throwing on the run, throw with initial velocities a
least as large as assumed in the model and with abou
much backspin. However, these outfielders can throw bal
maximum distance of only about 380 ft, from just in front
the warning track in center field to the plate on the fly.3 From
my own formulas, a ball hit with an initial velocity of 99.1
mph with a backspin of 1827 rpm will travel 354 ft if throw
at an optimum angle of about 35°. Using my model again
ball hit with the batted curve ball parameters of Ref. 1
velocity of 96.3 mph and a backspin of 2644 rpm, will trav
about 343 ft. These distances are in accord with Fig. 2.5
Ref. 2 and with my observations.

Although my calculation of baseball trajectories is not
accord with Ref. 1, I suggest that the primary error in th
results is in their lift formulas. The lift force is in the direc
tion of vb3Vb , whereVb is the velocity of the ball in still
air andvb is the angular velocity of the ball. With the axis o
the spin normal to the velocity,r b50.0368 m as the bal
radius,A50.00425 m2 as the cross sectional area of the ba
and m51.283 kg/m3 as the air density, they calculate th
magnitude of the lift force,L, in a way that follows closely
~see Ref. 1, Fig. 4! the results of Ref. 4 where~using differ-
ent notation!,

L'Cmmr bvbAVb , ~1!

where the coefficient,Cm'7.231027 with L in Newtons.
But the wind tunnel measurements4 extend only to velocities,
Vb'12 m/s~40 mph!, well below the drag crisis5 velocities,
while the values ofL so calculated were used for the muc
higher velocities of batted balls.~The drag crisis denotes th
transition region between a lower velocity fluid dynamic r
gime with high drag resistance to flow and a higher veloc
regime where the resistance is smaller.!

My own lift force values~Magnus forces in Ref. 2! also
follow Ref. 4 and Eq.~1! at low velocities, but are sharply
reduced from the values of Eq.~1! at higher velocities6 of the
drag crisis. Although this reduction follows from th
equations7 that reflect my view of the probable relation of th
Magnus force to the drag force, the reduced values also
required by the character of the observed flight of the b
~My model leads directly to a reduced Magnus force or
force in the drag crisis region and to the reversal of the fo
on smooth balls observed by Briggs,8 a reversal that limits
even Tiger Woods to 150 yd drives with smooth golf ba
which duck downward when hit with backspin by a drive!

The specific values of the drag coefficients that I adop
in the drag crisis region were constrained by my assump
that the coefficients,Cd and Cm , are functions only of the
Reynolds number and that fly balls are known to travel
184jp © 2005 American Association of Physics Teachers
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preciably further in Denver than at sea level. Because
density of air is lower in Denver, a given Reynolds numb
will correspond to a higher velocity there. Hence, we exp
that the drag crisis will be moved to higher velocities
Denver and for some formulations of the variation of t
drag and Magnus~lift ! forces with velocity in the drag crisis
range, fly balls would be expected to travel less far in Den
than at sea level, contrary to observations. Also, both
drag and lift or magnus forces are expected to be prop
tional to the air density and thus are reduced at high a
tudes. The reduction in drag increases the distance that
travel, the reduction in lift will decrease the range. Hence
find that balls hit in Denver according to the model of Ref
and the drag and lift formulas do not travel farther than at
level.

Their conclusion that balls batted from pitches with ov
spin have more backspin than balls hit off of pitches w
back spin is plausible and is in accord with my own form
las, but the detailed argument made in Ref. 1 in reaching
conclusion is not valid. They wrote that, ‘‘Although signifi
cant ball deformations can occur during batting, this analy
assumes rigid-body impact.’’ Hence, their spin transfer c
culation, the results of which are central to their conclusio
cannot apply to baseball because baseballs are greatly
formed when struck by a bat under game conditions.

I cannot claim that my own results are definitive—inde
while discussing uncertainties in my book,2 I wrote ~p. 3!
Reply to Comment on ‘‘How to hit home r
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‘‘Some results are hardly more than carefully conside
guesses: How much does backspin affect the distance a
fly ball travels?’’ Hence, although I am certain that Sawic
Hubbard, and Stronge1 are incorrect, I am not equally certai
that my own analyses are wholly right. The science of ba
ball ‘‘ain’t rocket science.’’ It’s much more difficult.

1G. S. Sawicki, M. Hubbard, and E. J. Stronge, ‘‘How to hit home run
Optimum baseball bat swing parameters for maximum range trajectori
Am. J. Phys.71~11!, 1152–1162~2003!.

2R. K. Adair, The Physics of Baseball~HarperCollins, New York, 2001!,
3rd ed.

3In the first part of the 20th century, there were often throwing conte
between games of Sunday double headers. The winners would some
throw the ball a distance approaching 400 ft, although a 380 ft thr
would sometimes win the prize. The record, set by Glenn Gorbous
Omaha in 1957, is 446 ft~see p. 104, Ref. 2!. You can be sure that the
throw at the Omaha altitude of 1040 ft was on a hot day with a followi
breeze—the ranges were always set so that the players threw with
wind—adding at least 30 ft to that for standard conditions.

4R. G. Watts and R. Ferrer, ‘‘The lateral force on a spinning sphere: Ae
dynamics of a curve ball,’’ Am. J. Phys.55, 40–44~1987!.

5C. Frohlich, ‘‘Aerodynamic drag crisis and its possible effect on the flig
of a baseball,’’ Am. J. Phys.52~4!, 325–334~1984!.

6See Figs. 2.1 and 2.2 in Ref. 2.
7Reference 2, p. 24.
8L. J. Briggs, ‘‘Effects of spin and speed on the lateral deflection~curve! of
a baseball and the Magnus effect for smooth spheres,’’ Am. J. Phys27,
589–596~1959!.
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I. INTRODUCTION

We appreciate Professor Adair’s contributions to the
derstanding of baseball mechanics, and we commend
popularization of science through the example of baseb
which illuminates various principles of physics. In additio
we welcome his comment1 as an expression of a genuin
desire to increase our understanding of baseball mecha
His comment has prompted us to reconsider carefully
implications of our model and its uncertainties.

We have long been uneasy, however, about the analy
models for various phenomena that have been propose
Adair.2 These include his models for ball-bat interaction a
aerodynamic forces on a moving and spinning ball. Ess
tially, he has created ‘‘recipes’’ for batting and lift and dra
All models are approximations and, as we noted in o
-
is
ll,

cs.
e

al
by

n-

r

paper,3 ‘‘The spin decay time constant and the function
dependencies of the drag and lift forces on the Reyno
number and spin parameter are among the least well un
stood parts of@our# model.’’ Nonetheless, we believe ou
models taken together are more realistic than those of Ad2

in toto.
To decide whether our model or Adair’s model of flight

more valid, we could launch baseballs with known velo
ties, launch angles and spin rates, and compare the mea
and predicted ranges. Such experiments should be d
However, we find the arguments1 presented by Adair regard
ing our model to be experimentally imprecise and bas
mostly on anecdotes and calculations from his model, ab
which we comment more in the following sections. We al
disagree that ‘‘the science of baseball@is# more difficult...
than rocket science,’’1 with the implication that it is espe
185jp © 2005 American Association of Physics Teachers
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Table I. Optimum control variables and maximum range for typical pitches.CDmin50.15,r51.205 Kg/m3, andm51.831025 N-s/m2.

Pitch type
Vb0

~m/s!
VB0

~m/s!
vb0

~rad/s!
Vb f

~m/s!
vb f

~rad/s!
z

~rad!
Eopt

~m!
copt

~rad!
Optimal

range~m!

fast 42.00 30.00 2200.00 44.46 194.75 0.4921 0.0277 0.1944 135.108
knuckle 36.00 30.00 0.00 44.09 232.30 0.4712 0.0259 0.1723 135.92
curve 35.00 30.00 200.00 44.23 267.64 0.4385 0.0227 0.1475 139.04
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cially difficult to understand. We believe it’s only baseball—
the impact and flight of a near sphere in a fairly limited ran
of Reynolds numbers and spin parameters.

Our paper is based on published experimental data~our
own and that of others!. These data include~1! the pitched
ball flight path angle at impact and its dependence on p
speed;~2! the dependence of the ball-bat coefficient of re
titution on impact speed;~3! the bat speed achievable b
good batters;~4! the coefficients of friction between ball an
bat; ~5! the flight drag coefficient dependence on the R
nolds number Re5rvd/m; and ~6! the flight lift coefficient
dependence on the spin parameter S5rv/v.

II. LIFT

Of the two aerodynamic forces, we are most confiden
our understanding of the source of lift and the variables
which it depends. The fluid mechanics literature4–6 and nu-
merous published studies7–10on baseball lift forces all agree
the lift ~or Robins–Magnus! coefficient is, within the speed
range relevant to baseball (0.5,Re,2.53105), not ~or at
most weakly! a function of Re, but instead depends mo
strongly on the spin parameter S.

The spin parameters of optimally hit balls are typica
small (S,0.25). Adair’s point that the bilinear lift coeffi
cient approximation~or fit! of CL versus S~Fig. 4 in Ref. 3!
must be wrong because it fits the low Re, high S data
Watts and Ferrer7 is incorrect and irrelevant. All of the othe
experimental data used to generate this approximation
very close to it; they are from experiments in the range
,S,0.47 and for larger Re more typical of the flight o
baseballs. Even the horizontal wind tunnel lift data
Briggs,11 when suitably reinterpreted to account for the 0.1
cylindrical wind shield on the ceiling~the wind shield re-
duces the time during which the ball is exposed to the
force!, result in lift coefficients that cluster around the bilin
ear fit in the practical ranges of 0,S,0.3, and 1.1,Re
,2.23105. This latter range contains the drag crisis. O
paper3 obtains optimal values for the variables controllab
by the batter, undercut E and swing anglec. Our calculations
do not depend on the fact that the experiments in Ref. 7 w
done for Re too small and S too large to be strictly relev
to baseball or that our bilinear approximation fits their da
That a fit of the data in Ref. 7 alone can give a reasona
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picture of how lift behaves at larger Re and lower S is
dicative of the fact that the dependence of lift on S is no
strong function of Re.

Even in the somewhat extreme~compared to baseball!
case of golf ball roughness, the careful and detailed stud
golf ball aerodynamics by Smits and Smith12 corroborates
the interpretation that the lift coefficient is not a function
Re for Re.90,000 and supports the assumption that the
coefficient is mainly a function of S for the range of Re
which baseball is played.

Although we agree with Adair that it is primarily the dif
ferences between our and his calculations of the lift that l
to the large differences in our predictions, we believe that
lift model is the best that is available. We find little or n
support in the fluid mechanics literature for Adair
suggestion1 ~see Fig. 2.2 in Ref. 2! that the dependence of CL
on S should be attenuated or reduced to the extent show
his model of lift at large velocities near the drag crisis. W
urge the reader to scrutinize carefully Adair’s equation2 ~p.
24! for how the lift ~Robins–Magnus! force and the drag
force are related and to consider whether there is any b
for this relation. We have not been able to find a derivati
experimental validation, physical explanation, or another r
erence anywhere in the literature to its use. Our view is t
this equation is not valid.

III. DRAG

We believe it is clear from the experimental data in Re
13, 8, and 10 that the baseball in high speed flight exp
ences the drag crisis; that is, the drag coefficient CD under-
goes an abrupt decrease at Re below or near 1.53105 and a
gradual recovery for Re.1.73105, although, as we noted in
Ref. 3, the depth of the drag crisis appears to be differen
spinning and nonspinning balls. In this sense the drag c
ficient is a function of Re and S, but the lift coefficient is
function of only S to a good approximation. Nevertheless,
optimally hit long fly balls have considerable spin. For th
reason we believe it is appropriate to assume a deeper
crisis for batted balls.3 This approximation might break dow
for line drives with little or no spin, but these hits are seldo
long fly balls, the main subject of our paper.

It is curious that Adair takes care to have his ‘‘recipe’’ fo
the drag coefficient curve pass through the single data p
9
7

Table II. Optimum control variables and maximum range for typical pitches;CDmin50.25,r51.205 Kg/m3, andm51.831025 N-s/m2.

Pitch type
Vb0

~m/s!
VB0

~m/s!
vb0

~rad/s!
Vb f

~m/s!
vb f

~rad/s!
z

~rad!
Eopt

~m!
copt

~rad!
Optimal

range~m!

fast 42.00 30.00 2200.00 44.64 204.43 0.5380 0.0294 0.2363 124.362
knuckle 36.00 30.00 0.00 44.13 250.32 0.5153 0.0277 0.1972 124.92
curve 35.00 30.00 200.00 44.33 284.64 0.4880 0.0248 0.1807 127.51
186Notes and Discussions
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of Briggs,11 CD50.31 at Re52.093105, while ignoring en-
tirely Refs. 8, 10, and 13, which report drag coefficients c
sistent with an abrupt and possibly deep drag crisis.

We disagree with Adair that the main uncertainty in o
flight model is the lift coefficient. Rather we think that th
main uncertainty may be the depth of the drag crisis, tha
the value of the minimum drag coefficient. In our paper3 we
took this minimum value to be CDmin50.15. This value is
consistent with the results of Ref. 14 as discussed in Ref.
But on further reflection, there is relatively little experime
tal data for baseballs in the range 1.6,Re,1.753105 that
would allow a more confident estimate of CDmin . Thus we
have done computational sensitivity studies, similar to th
in our paper,3 but with CDmin50.25.

Tables I and II compare optimal batting strategies for th
pitches that differ in speedVb0 and spinvb0 , with the bat
speedVB0 constant, and show that the different optimal u
dercutsEopt and swing anglescopt produce different batted
ball speedsVb f , spinsvb f and launch anglesz and result in
different optimal ranges. The results in Tables I and II can
compared directly to the results in the same format in Ta
II of Ref. 3. ~Note that the results here are for a sligh
different densityr and viscositym than in Ref. 3; see Sec
VII. !

The predicted range is very sensitive to increases in d
in the drag crisis region. For example, an increase of 0.1
CDmin gives a decrease in range of all optimally batted ba
of about 10 m. The optimal undercut E and swing anglec
increase by about 2 mm and 2°, respectively, and the re
ing launch angle increases by about 2.5°. The other esse
features of our results remain unchanged.

IV. SPIN-DOWN

We believe Adair’s estimate2 of the spin-down time con-
stant of 5 s to beunreasonably low, but this difference is n
a source of major disagreement because we assume tha
actual characteristic time is long enough that spin-down
effectively be ignored.3

What is the correct spin-down model? In the fluid mech
ics literature, we are not aware of any relevant analytica
numerical solutions of the spin-down problem for a sph
with translational velocity. The solution of Ref. 16 for spi
down with little or no translational velocity was used in Re
17 as justification for neglecting spin-down entirely. The
results16 predict a baseball spin-down characteristic time
about 250 s. It is difficult to determine if the spin-down ra
will increase or decrease when a large translational velo
is added. At zero or low translational Re, the shear stres
small but acts entirely around the ball. But at high Re, th
is separation and the high shear stresses act only in the
separated part of the boundary layer, but in an asymme
way ~some shear stresses accelerate and some decelera!.

Experimental spin-down rates for golf balls have been
tained in a wind tunnel12 and in flight.18 These results are
consistent with measurements of a characteristic time
golf ball spin-down of about 16 s. Reference 18 show
clearly that increased dimple depth~increased roughness! in-
creases the spin-down moment coefficient by'10%. Ex-
tending these results to baseball is not trivial, however. If
assume the baseball roughness is the same as that of a
ball, then at 40 m/sec~corresponding to Reynolds numbe
of the golf experiments!, the characteristic time for baseba
187 Am. J. Phys., Vol. 73, No. 2, February 2005
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spin-down is'28 s. If the equivalent roughness of the bas
ball is substantially less than the golf ball~which is conceiv-
able!, then the spin-down moment coefficient could be h
of that in golf and the spin-down time could be 50 s or mo
Thus we believe our assumption3 of neglecting spin-down
entirely may not be far off, even though with a spin-dow
time of 50 s the ball loses 10% of its spin in 5 s and this loss
may be significant enough to include in a dynamic model
flight. It would be interesting to apply the technique of Re
18 to measure the baseball’s spin-down in flight.

V. IMPACT

Adair1 claims the rigid body impact model used in Ref.
is invalid because it does not account for the finite defl
tions that result from a bat striking a baseball—deflectio
that increase the moment of inertia of the ball and decre
the moment arm of frictional forces that act during the init
part of the collision period. During impact, the effect of fini
deflections is to slightly increase the normal impulse ps at
which initial sliding is brought to a halt. Nevertheless, for a
hard hit balls, the angle of incidence~measured from the
normal! between bat and ball is well within the cone
friction,19 so initial sliding is brought to a halt substantial
before contact ceases; there is sufficient time for friction
halt initial sliding despite the changes in geometry. Beca
of the large baseball stiffness, the ball has almost recove
its spherical shape prior to separation from collision so t
for impacts at a small angle of incidence, the changes
tangential and angular components of the ball velocity
not much affected by finite deflections.

To bring the initial sliding to a halt during the conta
period, our rigid body theory3 shows that the coefficient o
friction m f must satisfy

m f>
2

7 Uv̂1~0!

v̂3~0!
U @12S0A11~ v̂3~0!/ v̂1~0!!2#

~11e* !
,

~1!

S0[
r bv~0!

Av̂1
2~0!1 v̂3

2~0!
,1,

wherev̂1(0) andv̂3(0) are the incident tangential and no
mal components of the relative velocity between the cen
of mass of colliding bodies,e* is the coefficient of restitu-
tion, andS0 is the spin parameter at incidence. For our sma
est measured coefficient of frictionm f50.35, Eq.~1! indi-
cates that the initial slip will be halted during the collisio
irrespective of the rate of initial spin ande* if the angle of
incidence is within 50° from the normal and21,S0,1.
These conditions are easily satisfied by almost all pitch
balls that can be batted past the outfield.

For the three optimal hits in Table I, the fractions of th
total compression impulse3 required to halt the slip, ps/pc ,
are only 0.19, 0.13, and 0.04 for the fastball, knuckle b
and curve ball, respectively. Much less than half of the ma
mum ball compression occurs before friction brings the i
tial sliding to a halt. If we assume a contact period of 1 m
and an initial normal relative velocity of 70 m/s, we estima
the maximum ball compression to be 0.011 m. Thus the
riod of slip will be slightly lengthened because of a;10%
reduction in the moment arm for frictional forces about t
center of mass, but this increased period is only a small
of the contact period.
187Notes and Discussions
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Adair2 ~p. 109! presents ‘‘recipes’’ for changes in the ve
locity of the ball during impact with a stationary flat surfac
These recipes are not applicable to batting a baseball bec
they take no account of the inertia of the bat and they neg
the initial spin of the ball. It is therefore difficult to unde
stand Adair’s statement1 that ‘‘@our3# conclusion that balls
batted from pitches with overspin have more backspin t
balls hit off pitches with back spin... is in accord with@his#
own recipes,’’ when the recipes do not consider the ini
ball spin. Furthermore, for elastic impacts, Adair’s recip
conserve energy whereas the equations in Ref. 3 exhib
loss in kinetic energy. This loss of kinetic energy exac
equals the work done by friction—work that transform
some translational kinetic energy into rotational kinetic e
ergy or vice versa.

The neglect of the initial ball spin causes significant err
in the launch angle.2 As an example, in the direct impact of
spinning baseball with a bat of normal incidence, a tangen
impulse pt is required to create the angular impul
rbpt5Ivo52mbvorb/5 necessary to stop the spin, where mb,
rb and I are the ball mass, radius and moment of iner
respectively. Whenvo5200 rad/s this tangential impuls
causes a tangential component of post-impact velocityt

5pt /mb52.93 m/s. For a normal rebound velocity of 4
m/s, this tangential velocity results in a deviation of the
bound path from the normal direction of 3.73 deg and a
deg difference in the directions of the paths of balls spinn
in opposite directions. Adair2 neglects this necessary cons
quence of Newton’s second law.

Our impact model is based only on Coulomb’s laws
friction and on Newton’s laws of motion. In contrast Adai2

obtains tangential changes in velocity based on the assu
tion that the coefficient of restitution is the sole source
energy dissipation. We argue that slip during impact w
friction is a secondary source of energy dissipation dur
collision, a source neglected in Adair’s model of batting.

VI. ANECDOTES

Although Adair’s anecdotes about the limited range
thrown balls may seem compelling, it is well known th
achievable human throwing velocities strongly depend
launch angle,20 so that the launch velocities in the Oma
contests might well have been significantly less than thos
the fastest pitchers~and optimally batted balls! if the thrown
launch angles were large. His insistence that the opti
launch angle is near 35° makes us wonder whether he
derstands that our definition of optimal includes the requ
ment of the ball having been batted. The optimal batted c
ditions must trade off velocity, angle, and spin. O
calculations show explicitly how to do so.

We question whether Adair’s statistics1 on the small per-
centage of long home runs are still~or ever were! valid.
According to Ref. 21, Mark McGuire’s 70 home runs
1998 included 20 that traveled more than 450 ft, four tim
more by a single person than IBM measured for the ho
teams~in less than all of the ballparks! of the league. In the
only game one of us attended at Pac Bell Park~Aug. 9,
2003!, Jim Thome hit a 441 ft home run. The distances
reported3 as optimal~442 and 455 ft! are long, but are no
outlandish by today’s standards. If the depth of the drag
sis turns out to be smaller than we supposed~see Table II!,
then these optimal ranges become 408 and 418 ft.
188 Am. J. Phys., Vol. 73, No. 2, February 2005
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During our experiments8 at the Olympic Games in Atlanta
in 1996 where we measured the trajectories of pitched b
and used this data to infer the drag and lift forces, we
served, filmed, and digitized the 3D initial trajectory of
batted fastball hit for a home run. This home run had
launch velocity of 50.8 m/s~113.6 mph!, s.d. 0.45 m/s and
launch angle of only 13.7 deg, s.d. 0.3 deg! It cleared the
ft high left-center-field fence at Fulton County Stadium abo
395 feet from home plate and traveled more than 400 ft. T
precise experimental data point shows that balls hit not
much faster than those hypothesized by Adair and at a m
lower launch angle can clear the fences, even near ce
field. Unfortunately, it was not possible to measure the s
of the ball, but it certainly must have been high because
resulting lift is the only force capable of delaying that bal
rendezvous with gravity. We doubt that Adair’s lift model
capable of supporting this home run with a reasona
amount of spin.

VII. CORRECTIONS

In the extensive review of our calculations and pap
prompted by Adair’s comment,1 we have found a misprin
and two small errors, and have appreciated that we co
have chosen a better set of nominal parameters. Althoug
did not affect our calculations, the radii of gyration for th
ball and bat are transposed in Table I of our paper.3 Rather
than the intercept 0.09 as stated in Ref. 3, Eq.~29b!, we
inadvertently used 0.10 in our calculations and a cons
dynamic viscositym51.831025 N-s/m2, rather than the
value m51.84531025 N-s/m2, which would be calculated
from the constant kinematic viscosityn51.531025 m2/s
and densityr51.23 Kg/m3 we reported.3 We regret these
discrepancies, although they change our results very littl

Also we chose3 a nominal densityr51.23 Kg/m3 which
corresponds better to a chilly day at Fenway in April than
temperatures at which the game is more typically play
(68 °F). In our results here we use the more realistic val
r51.205 Kg/m3 andm51.831025, the latter of which, un-
like the kinematic viscosityn, is a function of the tempera
ture only. This assumption makes Re52rvrb /m depend only
on velocity v and densityr at higher altitudes but at the sam
temperature.

VIII. CONCLUSIONS

We believe that Adair1 may be too narrowly interpreting
the main message of our paper.3 We view its contributions to
be the integration of the experimentally based impact a
flight models such that it is possible to see how they
together, and our recognition that there is an optimal batt
strategy that is dependent on the bat-ball interaction and
flight of the ball. We reaffirm our conclusion that an op
mally batted curve ball can travel farther than an optima
hit fast ball. It is apparently robust and remains so even if
value of CDmin proves to be too small by as much as a fac
of two.
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Fig. 5. Interferograms of a 17 cm circular plate vibrating in one of its normal modes. Theoretically the two modes occur at the same frequency, hothe
degeneracy is broken by a slight asymmetry in the plate. The frequencies of vibration are 2133 and 2145 Hz.
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