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ABSTRACT 

Michael Gordon Browne: Neuromechanical adaptations to real-time biofeedback of the center of 

pressure during human walking 

(Under the direction of Gregory S. Sawicki) 

 

The purpose of this study was to understand the effects of adjustments to the center of 

pressure (COP) via real-time visual biofeedback on joint loading in the frontal and sagittal planes 

while walking. Eight subjects walked on an instrumented treadmill while provided bilateral 

targets for toe-off on a visual display alongside real-time COP trajectories. Toe-off targets 

included a neutral location along with medial, lateral, anterior and posterior shifts. Resultant 

COP shifts caused compensations in joint mechanics; anteriorly/posteriorly shifted COP, was 

achieved by velocity changes to COP progression, and lead to increases/decreases in 

plantarflexor angle and reductions in hip extension moment while laterally/medially shifted 

COP, was achieved through spatial changes to COP progression, lead to increases/decreases in 

both peak inversion ankle angle and moment. Temporal modifications to peak muscle activities 

drove mechanical changes. Results suggest that COP biofeedback could be a useful tool or 

shaping joint kinematics/kinetics during functional locomotion tasks. 
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CHAPTER 1: CENTER OF PRESSURE MODIFICATION VIA VISUAL BIOFEEDBACK 

 

Introduction 

Motor learning and re-learning (e.g. rehabilitation) is more effective and can happen more 

quickly when feedback is provided to enforce corrected movements. Visual biofeedback, providing an 

individual with visible cues, has shown promising effects on a variety of mobility outcomes with 

significant research looking at its use in static stability control (Cofré Lizama et al., 2015; D'Anna et al., 

2015; Lakhani and Mansfield, 2015).Visual biofeedback during gait has also been attempted with a 

multitude of gait metrics (e.g. EMG, distorted stride length, etc.) (Franz et al., 2014; Kim and Mugisha, 

2014) and with visual modalities ranging from simple mirrors (Willy et al., 2012) to complex delayed 

contralateral limb mirroring in a virtual reality system (Barton et al., 2014).  

The center of pressure (COP), defined as the centroid of all external forces acting on the plantar 

surface of the foot (Lugade and Kaufman, 2014), is a promising cue for visual biofeedback as it resides 

at the base of the kinetic chain. During normal walking, the COP propagates from heel to toe on the 

lateral aspect of the foot until late stance when it quickly progresses medially during push-off (Lugade 

and Kaufman, 2014). Perhaps most importantly, the 3 dimensional COP location with reference to the 

ankle joint center influences the moment arm of the ground reaction force (GRF), thereby affecting leg 

joint moments (Farris and Sawicki, 2012; Huang et al., 2015). Furthermore, joint mechanics have been 

shown to have high sensitivity to changes in COP (Camargo-Junior et al., 2013; McCaw and DeVita, 

1995). This implies that modification of this single variable has the potential to alter the dynamics 

(kinematics and kinetics) of multiple lower extremity joints. 
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In spite of this, COP has been used primarily as an outcome measure through a wide variety of 

biomechanical manipulations and foot pathology evaluations (i.e., through pedobarography). Although 

COP is considered to be modulated specifically by joint torques, specifically at the ankle (Gruben and 

Boehm, 2014), it is poorly understood how humans modulate COP and what effects more proximal 

joints (i.e., knee and hip) play in its modification.  The purpose of this study was to determine if visual 

biofeedback of COP during healthy walking could induce systematic changes on lower extremity joint 

mechanics (i.e., kinetics and kinematics). 

Clinically, modification of the COP has been used for pain relief and in attempts to improve joint 

alignment and dynamic moments. Modified footwear has been developed to guide both the mediolateral 

and anteroposterior propagation of the COP using movable domelike attachments to shoe soles (Khoury 

et al., 2015). Additionally, research to decrease the external knee adduction moment in patients suffering 

from knee osteoarthritis have implemented simple shoe wedges under the lateral portion of the heel 

(Chapman et al., 2015; Jones et al., 2015), essentially modifying the COP during loading.  To our 

knowledge, however, no research has focused on the implications that intentional changes in COP 

propagation have on motor coordination and joint kinematics and kinetics, even in healthy, young 

individuals. 

Considering the ability of the COP to modify lower extremity joint moments, we strove to 

investigate whether real-time COP biofeedback during gait could function as a translational replacement 

for more complex mechanical and/or biofeedback based treatments. We developed a system to visually 

portray COP trajectory in the transverse plane of the foot along with target locations for toe off (Figure 

1). Our goal was to determine healthy individuals’ ability to intentionally modulate their COP in real-

time in response to targets while walking, and furthermore, to evaluate biplanar correlations between 

COP and joint moments. We hypothesized that 1) subjects would volitionally modify and maintain an 
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altered COP trajectory when provided with real-time visual biofeedback of COP, 2) shifting the COP 

trajectory anteriorly/posteriorly (A/P) would increase/decrease sagittal plane plantarflexor ankle 

moments, respectively, 3) shifting COP trajectories medially/laterally would decrease/increase frontal 

plane inversion ankle moments, respectively, and lastly 4) we would see increases in coactivation of the 

triceps surae muscles, specifically with the anteroposterior shifts in COP. 

 

Figure 1 – Biofeedback Schematic 

Split belt BERTEC treadmill with an eye-level computer monitor was utilized to modulate COP targets 

bilaterally. Each axis denote % shifts of respective targets. COP trajectories were shown with a target 

representing an anthropometric (NEUTRAL) location, M/L shifts (MEDIAL/LATERAL) and A/P shifts 

(ANTERIOR/POSTERIOR). 
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Methods 

Participants 

We recruited eight healthy, young adult subjects who provide written, informed consent 

(University of North Carolina IRB Office) to be in this study. The group consisted of five males and 

three females with mean (SD) age: 26.9 (2.7) years and mass: 70.49 (13.57) kg. None reported any 

musculoskeletal injuries within six months of testing nor had any neurological impairments. 

Procedures 

41 retroreflective markers were used in order to collect motion capture data for use in the 

creation of an inverse dynamic model as well as real-time COP tracking. For dynamic trials (i.e., 

walking) markers were placed bilaterally over the calcaneus, in a 3-marker cluster on top of the foot, in 

4-marker clusters on the shank and thigh, and a 3-marker cluster on the pelvis. Static trials also included 

anatomical landmarks to complete the model with markers on the base of the 2nd metatarsal, medial and 

lateral malleoli, medial and lateral femoral epicondyles, greater trochanters and iliac crests. All subjects 

walked at 1.25 m/s barefoot for all trials. We collected basic anthropometric data (foot width, foot 

length, and distance from toe to end of foot) for inverse dynamic calculations and assistance with real-

time COP plotting. All subjects walked with six different conditions including no feedback (NOFEED), 

a neutral position defined by foot size (NEUTRAL), and four shifted toe-off locations: medial shift 

(MEDIAL), lateral shift (LATERAL), posterior shift (POSTERIOR), and anterior shift (ANTERIOR). 

All trials after the NOFEED condition were randomized to avoid bias ordering effects based on learning 

adaptation or fatigue. After a minimum of 3 minutes walking with biofeedback, we collected 10 

consecutive steps of marker trajectories and analog data for analysis. 
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Biofeedback Display 

We used a pre-collection static capture to establish an accurate biofeedback projection of the 

transverse plane of the foot. Subjects stood with feet parallel to establish an original rotation matrix for 

each foot. These 3x3 matrixes were calculated using two perpendicular vectors formed by the right 

triangle alignment of the 3-marker cluster attached to the top of each foot and their cross-product. The 

difference between this rotation matrix and the lab’s coordinate system provided an offset, at each 

frame, to preserve the visual representation of of each subjects’ foot.  

A computer monitor centered at eye-level in front of the treadmill to displayed the biofeedback 

(Figure 1). A software development kit paired with the motion capture software (Vicon Nexus) assisted 

in passing marker and ground reaction force data in real time to a custom script written in Matlab, a 

computation software (MathWorks, Natick, MA). The scripts first determined heel-strike with a vertical 

GRF threshold of 20N. The treadmill COP location, extracted from the treadmill in its internal 

coordinate system, was subtracted from the calcaneus marker position to translate its position. Then, 

using the same cluster on top of the foot to calculate a frame-by-frame, 3x3 rotation matrix, the COP 

location was transformed from each belt into the appropriate foot’s coordinate system. The entire COP 

trajectory for each foot was plotted real-time. A delay of 3 frames (0.025s) allowed for the last 3 frames 

of data to be truncated to eliminate large shifts in COP contributed to ground reaction force noise at low 

forces. This method was utilized in place of active filtering of analog and marker data to maximize 

frame rate. Furthermore, to compensate for delay in the system, a rolling average of the previous 3 

strides was also shown. A different red circle was shown as a target for the toe-off location. All data 

were plotted on top of a graphic representing a transverse plane image of the bottom of the foot with 

both length and width scaled to each subjects’ anthropometry (Figure 1). Subjects were instructed to use 

any technique necessary to achieve targets while maintaining a heel-to-toe-style walking pattern.  
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Targets 

Target size diameter was defined as 10% of the foot width between MTPJ1 and MTPJ5. The 

NEUTRAL location was defined as along the midline of the foot (50% foot width) to ensure there would 

be physical space medially and laterally for each subsequent shift. Research has shown that COP 

propagates approximately 83% of the foot length (Han et al., 1999; Lugade and Kaufman, 2014) so the 

NEUTRAL location along the anteroposterior axis of the foot was set at 85% of the foot length from the 

calcaneus. Each shift (MEDIAL, LATERAL, ANTERIOR, POSTERIOR) in toe-off location was 10% 

of foot length along the respective direction of the foot away from the NEUTRAL location (Figure 1).  

Data Analysis 

Marker trajectories (Vicon Nexus, Denver, CO) were collected at 120 Hz with analog data 

collected at 960 Hz. Raw marker positions were filtered using a second-order low pass Butterworth filter 

with a cut-off frequency of 8 Hz. Raw force data for use in the inverse dynamic calculations were 

filtered with a second-order low pass Butterworth filter with a cut-off frequency of 35 Hz. We 

incorporated these data into an inverse dynamic model to estimate joint centers in relation to cluster 

locations. We collected EMG from the medial gastrocnemius (MGAS), lateral gastrocnemius (LGAS), 

and soleus (SOL) then band-pass filtered (20-460 Hz), rectified, and low pass filtered with a cutoff 

frequency of 6 Hz these data. Finally, we integrated data across time and normalized by the peak values. 

We calculated all joint kinetics and kinematics using Visual3D Software (C-Motion, Inc., Germantown, 

MD). We evaluated data for the right leg in all conditions.  

We calculated the average location of the COP location along both the M/L and A/P axes of the 

foot across the entire stance phase as a modality to determine total resultant shift in COP over stance. 

We extracted relevant peak values as well as averages across stance (0-60% of the gait cycle) from each 
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mechanical outcome measure (i.e., peak angles, moments)  as denoted by vertical green lines in Figures 

3 and 8. We additionally averaged EMG activity across early-to-mid stance (0-40%), across the entire 

stance phase (0-60%) and extracted its peak value. Lastly, for the anteroposterior shifts, we extracted 

peak propulsive force values. 

Statistics 

We used SPSS Statistics 23 (IBM, Armonk, North Castle, NY) to compute all statistical 

outcomes. We used one-way repeated measures Analysis of Variance (ANOVA) to calculate main 

effects (p < 0.05) and pairwise t-tests (p < 0.05) to evaluate specific effects between conditions for each 

variable as well as to determine the main/individual effects of biofeedback on COP modification.  

Results 

COP Target-Matching Accuracy 

Across stance, we saw no significant differences between the NEUTRAL and NOFEED COP 

locations in neither the frontal nor sagittal planes (Figures 2C and 7C) (p=0.25 for anteroposterior 

location and p=0.68 for mediolateral location). Furthermore, we observed no significant changes in the 

final point of COP (Figure 2A). We did see, however, significant shifts in COP location when observing 

the location averaged across stance.  

Anteroposterior Shift 

Biofeedback of a posteriorly shifted toe-off location significantly shifted the average COP 

posteriorly when compared to NEUTRAL (p=0.021) and ANTERIOR (p=0.001) as well as a nearly 

significant shift compared to NOFEED (p=0.051) (Figure 2B). The anteriorly shifted toe-off 
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biofeedback location elicited a significant anterior shift of the average COP when compared to 

NOFEED (p=0.016) and POSTERIOR (p=0.001) (Figure 2B). 

 

Figure 2 - Anteroposterior COP Location 

A. Transverse plane COP trace for shifts along the anteroposterior axis of the foot 

B. Anterior (positive) propagation of the COP normalized to foot length over time  

C. Average anteroposterior location of COP over stance phase. 
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For anteroposterior targets, the primary kinematic adaptations were seen at the ankle and hip, 

with posterior shifts in COP leading to less ankle plantarflexion and less hip extension and conversely, 

anterior shifts in the COP leading to increased ankle plantarflexion (Figure 3). This trend was supported 

statistically with significant increases in peak plantarflexion for the anterior shift (p=0.023) and 

significant decreases for the posterior shift (p=0.012) when compared to the NEUTRAL target (Figure 

4). 

We found no significant difference in peak plantarflexion moments. When averaged across 

stance, however, the anteriorly shifted COP caused a significant increase in ankle moment when 

compared to the NEUTRAL (p=0.046) condition (Figure 3).  

Peak hip extension moments for both ANTERIOR and POSTERIOR were significantly reduced 

than NOFEED (p=0.026, p=0.021 respectively) condition (Figure 4) though not with respect to 

NEUTRAL. 
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Figure 3 - Sagittal plane joint mechanics for anteroposterior shifts 
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Figure 4 - Peak sagittal plane joint mechanics for anteroposterior shifts 

Peak values of sagittal plane hip, knee and ankle angles and moments across stride. (Peak knee moment 

is the peak extension moment) 
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Peak propulsive force was both significantly increased and decreased for the ANTERIOR and 

POSTERIOR shifts, respectively, when compared to NOFEED (p=0.007 and p=0.018, respectively) and 

NEUTRAL (p=0.020 and p=0.006, respectively) (Figure 5B).  

 

Figure 5 - Propulsive force for anteroposterior shifts 
 

A. Anteroposterior (AP) Ground Reaction Force (GRF) traces for COP shifts along the anteroposterior 

axis of the foot. 

B. Peak Propulsive GRF values demonstrate a reduction with the posterior shift and an increase with the 

anterior shift. 
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A/P COP adjustments had no significant effects on triceps surae muscle activations (Figure 6). 

 

Figure 6 - Triceps surae EMG activity for anteroposterior shifts 

EMG activity of the triceps surae muscles (Lateral Gastrocnemius: LG, Medial Gastrocnemius: MG, 

Soleus: SOL) over the entire stance, early to mid-stance (1-40% of gait cycle) and the peak activations. 
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Mediolateral Shift 

Biofeedback of a medially shifted toe-off location significantly shifted average COP medially 

when compared to NEUTRAL (p=0.001), NOFEED (p=0.014) and LATERAL (p=0.014)  (Figure 10). 

 

Figure 7 - Mediolateral COP Location 

 

A. Transverse plane COP trace for shifts along the mediolateral axis of the foot 

B. Medial/Lateral (up/down) propagation of the COP normalized to foot length over time  

C. Average mediolateral location of COP over stance phase 



15 

 

Across the mediolateral condition changes, the primary mechanical adaptations were made by 

the ankle angle and moment. As COP shifted from medial to lateral, peak ankle angle also shifted from 

eversion to inversion, respectively. We observed this adaptation both across stance as well as at the peak 

values. Pairwise comparisons showed that MEDIAL was significantly more everted than NOFEED 

condition (p=0.033) although not significantly everted than NEUTRAL (p=0.064). LATERAL was 

significantly more inverted than NEUTRAL (p=0.026). 

A shift in COP demonstrated a significant main effect on peak and average values of the frontal 

plane ankle moment during stance. LATERAL caused a significant peak ankle moment increase from 

the NOFEED (p=0.042) condition (Figure 9). 

Lastly, we observed a shift to a less abducted hip posture across all biofeedback trials, supported 

by a significant main effect across stance (p=0.042) (Figure 8) 
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Figure 8 - Frontal plane joint mechanics for mediolateral shifts 
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Figure 9 - Peak frontal plane joint mechanics for mediolateral 

Peak values of frontal plane hip, knee and ankle angles and moments across stride. (Peak knee moment 

is the peak adduction moment) 
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M/L COP adjustments had no significant effects on triceps surae muscle activations (Figure 10). 

 

Figure 10 - Triceps surae EMG activity for mediolateral shifts 

EMG activity of the triceps surae muscles (Lateral Gastrocnemius: LG, Medial Gastrocnemius: MG, 

Soleus: SOL) during anteroposterior shifts to COP over the entire stance, early to mid-stance (1-40% of 

gait cycle) and the peak activations. 
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Discussion 

This study strove to determine the ability of individuals to intentionally modify their COP 

trajectory while walking with visual biofeedback and to evaluate the sensitivity of lower extremity joints 

to the respective changes. We hypothesized that 1) subjects would volitionally modify and maintain an 

altered COP trajectory when provided with real-time visual biofeedback of COP, 2) shifting the COP 

trajectory anteriorly/posteriorly (A/P) would increase/decrease sagittal plane plantarflexor ankle 

moments, respectively, 3) shifting COP trajectories medially/laterally would decrease/increase frontal 

plane inversion ankle moments, respectively, and lastly 4) we would see increases in coactivation of the 

triceps surae muscles, specifically with the anteroposterior shifts in COP. Our data largely support the 

first three hypotheses but reject the fourth. In general, subjects responded to COP toe off target locations 

by altering the spatiotemporal trajectory. In order to achieve the COP shifts along the anteroposterior 

axis of the foot subjects resulted to using the temporal characteristic of COP. Alternatively, to achieve 

shifts in the mediolateral axis of the foot, subjects predominantly modified spatial coordinates of the 

COP. As hypothesized, we observed the ankle mechanics (i.e., angles and moments) being the most 

sensitive to both mediolateral and anteroposterior shifts to the COP. Interestingly, we observed no 

resultant changes in the magnitude of EMG activations, although this is likely due to the temporal nature 

of COP leading to unaccounted for temporal shifts in EMG activity.  

Anteroposterior Shift 

Along the anteroposterior axis of the foot, biofeedback of a posteriorly shifted toe-off location 

was effective in inducing a posterior shift of about 5% foot length (i.e., shorter moment arm of ground 

reaction force) to the average COP trace while an anterior target also induced an anterior shift of about 

5% foot length (ie. longer moment arm of ground reaction force) when compared to normal. The slope 

(velocity) of the COP propagation through mid-stance across percent stride (Figure 2B) suggests that 
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subjects used temporal changes to COP to induce these changes. The anterior shift to the COP was 

achieved through more rapidly reaching the anterior portion of the foot. Approximately 75% of the foot 

length was utilized during the first 50% of stance. Conversely, the opposite trend was seen with the 

posterior shift with approximately 60% of the foot length being used in the first 50% of stance. 

Furthermore, although the final locations of the COP were not significantly different, the respective 

increase and decrease in average ankle moment across stride can be attributed to the associated increase 

and decrease in propulsive ground reaction force.   

Mediolateral Shift 

Along the mediolateral axis of the foot, a medially shifted COP target resulted in a medial shift 

of the average COP of about 3% foot length and, while no significant change was observed, a lateral 

shift in target also induced a lateral shift in average COP of about 3% foot length. In a very similar 

manner as the anteroposterior shifts COP converged to the same general area in the medial and anterior 

aspect of the foot with reduced forces. The COP velocity (slope of Figure 7B) was largely uneffected 

such as seen in the anteroposterior shifts, however, subjects started relatively inverted or everted and 

maintained the position until late stance (approximately around 75% of stance phase).  

The observations at the ankle during the mediolateral shifts were consistent with the 

hypothesized ankle moment changes. Peak ankle inversion moment increased with lateral shifts to the 

COP and there were non-significant reductions in peak ankle moment for medial shifts. The medial 

shifts to the COP also showed altered ankle range of motion. This may create opportunities to translate 

the biofeedback approach to improve equinovarus posture for stroke populations (Khallaf et al., 2014) or 

as an alternative to bracing in ambulating children with clubfoot to maintain an abducted and everted 

foot posture while walking (Dimeo et al., 2012). While these moment changes are consistent with 

expectations, we did not observe any reductions in knee adduction moments as would be relevant in 
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knee osteoarthritis populations. Furthermore, while research has shown that peak knee adduction 

moment can be reduced with lateral wedges forcing the COP medially (Sawada et al., 2016), this study 

suggests that such a shift in COP volitionally does not necessarily elicit a response at the knee.  

Electromyography 

The lack of magnitude changes to triceps surae muscle activations was somewhat surprising. 

Work performed by Goryachev et al. used mechanical modification of the COP through custom 

footwear and saw variations in the lateral gastrocnemius activity during terminal stance and pre-swing 

(Goryachev et al., 2011). These authors also demonstrated modifications to the COP by the tibialis 

anterior, biceps femoris, and vastus lateralis which were not measured in this study but may have 

contributed to A/P and M/L COP shifts based on their architecture and relation to the joints. 

Additionally, no muscles relating specifically to ankle inversion/eversion such as the peroneus longus 

were collected. Future studies should investigate the utilization of more proximal muscles such as the 

hip abductor/adductor muscles in addition to ankle inverter/everter muscles. An alternative possibility is 

that passive structures at the ankle (ie. the Achilles tendon) are playing a larger role with alterations of 

the COP thus eliminating the need to increase/decrease activation of the muscles. Additionally, it is 

important to consider that small changes in the location of the center of mass can create large shifts in 

the COP simply by capitalizing on a longer moment arm. 

Limitations 

Gait speed may have played a role in the difficulty of subjects to fully maintain accurate COP 

trajectories. Modulation of a 2 dimensional parameter bilaterally may have been a difficult task to 

perform while maintaining the speed of 1.25 m/s. Anecdotally, subjects mentioned often switching focus 

from one foot to the other after many consecutive steps, suggesting a cognitive overload which was not 
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accounted for in this study. The complexity of volitionally adjusting movement for two feet each in two 

degrees of freedom (each target had both an anteroposterior and mediolateral position) could have been 

taxing. This may imply that, should real-time COP biofeedback be implemented, a single degree of 

freedom (i.e. visual display of anteroposterior or mediolateral displacement only) which is more 

outcome derived should be used. Future research should utilize either larger target quadrants of the foot 

or visual feedback of the displacement only along the anteroposterior or mediolateral axis. 

Implications and Future Work 

As observed in our results, timing was a large consideration when modifying COP propagation, 

seen in COP traces as well as angle and moment profiles. COP shifts along the anteroposterior axis of 

the foot relied almost exclusively on this temporal component to COP while mediolateral shifts acted 

primarily within the realm of time-independent mechanical adaptations. Joint loading for various 

pathologies also has a temporal aspect, such as peak knee adduction moment occurring in early stages of 

stance phase. Future research should investigate targeting COP changes at different locations on the foot 

that may more accurately align with more specific phases of joint mechanics. For instance, providing a 

target shifted along the mediolateral axis of the foot just after heel-strike may improve the chances of 

reducing the knee adduction moment that is observed during loading. 

Potentially the most translational contributions from the anteroposterior shifts to the COP was 

the increase (anterior) and decrease (posterior) in propulsive force demonstrated. Propulsive force is 

closely related to preferred walking speed in healthy and impaired populations, such as stroke (Bowden 

et al., 2006). One limitation of in-sole technologies is their inability to accurately measure shear forces 

(ie. propulsive forces). Utilizing anterior shifts to the COP through in-shoe sensors may be an effective 

modality to attempt to increase propulsive forces through correlation and thus preferred walking speed 

similar to work performed by Franz and Kram (Franz et al., 2014). Surprisingly here, we did not observe 
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an increase in peak ankle moment to go along with our increase in propulsive force. One possible 

explanation could lie in the metatarsal phalangeal joint, and its capacity to generate force (Goldmann 

and Brüggemann, 2012). Increasing and decreasing the moments generated by the metatarsal phalangeal 

joint could have played some role in the propulsive GRF while not affecting ankle moments.    

One factor making the utilization of COP exciting is its potential for translation. Most lab-based 

technologies for measuring COP involve the use of force plates, either imbedded in a treadmill or on 

over-ground walkways. Significant effort, however, has gone into the validation and development of 

various commercially available wearable insoles such as the Pedar-X insole system (Novel, Munich, 

Germany), the Parotec System (Paromed, Neubeuern, Germany), and the F-Scan (Tekscan, South 

Boston, MA) (Chesnin et al., 2000; Debbi et al., 2012; Han et al., 1999). Furthermore, newer research 

has pushed to develop systems to reduce cost and noninvasively measure plantar pressures, such as 

using capacitive pressure sensing fabrics (Shu et al., 2010) or estimate to COP, GRFs and ankle 

moments using combination load cells and pressure transducers (Jacobs and Ferris, 2015). These 

technologies are creating new possibilities for the real-time capture and implementation of the COP. 

Conclusion 

Providing visual biofeedback of COP trajectory via toe-off targeting effectively shifted average 

COP locations along the direction of each target. Changes in COP acting in the sagittal plane were 

controlled by temporal adjustments while those in the frontal plane were controlled with angle and 

moment changes at the ankle. A lack of changes in triceps surae EMG magnitudes likely signifies that 

muscle activation was also time dependent for sagittal plane shifts and that the triceps surae complex 

plays little role in frontal plane COP modification. The biofeedback modified joint loading largely as 

hypothesized with most compensations being observed in angles and moments at the ankle and small 

effects on more proximal joints. COP biofeedback should prove an efficacious tool for goal-oriented 
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tasks. For example, a shift medially of the COP demonstrated well-defined compensations at the in 

ankle angle which may benefit individuals suffering from equinovarus or ankle instability as an 

alternative option from bracing.  
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